Einstein Probe (EP) mission

(Wide-field X-ray Telescope, WXT)

http://ep.bao.ac.cn/

<u>Sugizaki</u>, Mutsumi (<u>杉崎</u>睦) National Astronomical Observatories of China (NAOC) (中国科学院国家天文台) Einstein Probe (爱因斯坦探针卫星) mission team

Einstein Probe mission overview

- Satellite profile
 - Weight: ~1400 kg, Power ~1100 W
 - Orbit: 600 km, inclination ~ 29 deg. (Xichang, 西昌, 四川)
- Science instruments
 - WXT (Wide-field X-ray Telescope) 12 units. 0.5-4 keV (soft X-ray)
 - Lobster-eye X-ray mirrors + BI CMOS products of Chinese Companies
 - One-unit FOV = 9x9 deg^2 x4. Total 3600 deg^2 = 1.1 sr
 - FXT (Follow-up X-ray Telescope) 2 units. 0.3-10 keV
 - Walter-I mirror + PN CCD
 - FOV: phi=30 arcmin.
- Schedule
 - 2019/12 Qualification modeling (Phase C)
 - 2021/03 Flight production (Phase D)
 - 2022/12 launch

Collaboration Team

- China
 - National Astronomical Observatories, CAS (NAOC)
 - Institute of High Energy Physics, CAS (IHEP)
 - Shanghai Institute of Technical Physics, CAS (SITP)
 - National Space Science Center, CAS (NSSC)
 - Shanghai Micro-Satellite (Microsat)
 - Chinese Academy of Launch Vehicle Technology
- Outside of China
 - European Space Agency (ESA)
 - MPE, Germany
 - CNES, France

Zoom collaboration meeting in 2020 Nov.

NAOC team members

Operation plan

- Operation modes
 - Survey: 3 pointing per orbit, each ~20 min exposure to cover whole night sky in 3 orbits (~4.5 hour).
 - On-board WXT data reduction and triggering FXT follow-up of new transients.

Maneuver time: 60 deg / 3 min.

- ToO observations.
- Alert downlink
 - Baseline: Beidou system (30 sat.)
 - Backup: VHF network (French)
- Quick ToO command
 - Baidou system: latency < 10 min
- Mission life
 - Nominal 3 +2 years

Main scientific objectives

- Monitoring soft X-ray transients and variable sources with unprecedented sensitivity and high cadence
- Discovering normally quiescent black holes at all astrophysical mass scales by capturing the transient flares, particularly TDE from SMBHs
- Soft X-ray counterpart search for gravitational-wave events, fast radio bursts (FRBs),
- Finding new types of soft X-ray events

EP WXT Sensitivity

Target space in soft X-ray time domain astronomy

EP sensitivity (Yuan 2018)

Wide-field X-ray Telescope (WXT)

- Lobster-eye X-ray mirrors (NNVT, China) + BI CMOS (Gpixel, China)
- Total FOV = 1.1 sr with 12 WXT units
- Spatial resolution ~ 5' (FWHM)
- Position accuracy < 1'
- Effective area ~ 3 cm² at 1keV
- Energy resolution: 170 eV at 1 keV
- Readout rate: 50 ms per frame

Lobster-eye optics

Schematic

Fig. 3 The normalized PSF of the telescope described in Section 2 considering the surface roughness of about 0.55 nm and pore pointing deviation which follows a Gaussian distribution with σ =0.85 arcmin. Each PSF image is obtained by using 5×10^6 incident photons. (*top left*) The surface plot of PSF at 1.0 keV. (*top right*) The contour plot of the PSF when the 1.0 keV parallel X-ray beam is on axis. (*bottom right*) The PSF at 4.0 keV when the source moves to a position of 1.5° zenith angle and 45° azimuth angle. (*bottom left*) One dimensional PSF at different energy considering one central group of data along the X-axis of the detector. The color codes in the right two panels are in logarithmic scale

(Zhao et al. 2014)

Follow-up X-ray Telescope (FXT)

- 2 Walter-I mirror (1 MadiaLario + 1 eROSITA spare or Chinese product) + PN CCD (MPE) = nearly eROSITA module on SRG
- FOV phi 38'
- Spatial resolution 0.5' (HPD)
- Position accuracy ~ 5".
- Effective are 300 cm² @ 1keV

1 s per frame

- Energy resolution: 170 eV @ 1 keV
- Readout rate:

WXT feasibility prospects from data simulation and analysis

WXT survey monitoring footprints (1 day simulations)

- In 3 orbits (~ 5hr) WXT covers most of the night sky (can be disrupted)
- Cover the whole sky in half year
- Synergy with other M-W & M-M facilities (LSST/SKA/Swift/SVOM/LIGO/...)

GW-counterpart search

LIGO/Virgo O3 run (2019/3 -2020/4) GW source alerts https://gracedb.ligo.org/superevents/public/O3/

Confidence contours of GW source location

Very good case

Example in GW counterpart search with MAXI

S200316bj March 16, 2020 21:57:56 UTC (= T)

Uncovered area for high radiation zone, sun angle, and scan pole.

MAXI covers 85% sky by ~90 minutes.

MAXI event image on GW contours

T-5 min to T+5 min

T-5 min to T+30 min

T-5 min to T=90 min

Tests with EP observation simulator (Preliminary)

Assume the event time March 16, 2020 -> 2023 21:57:56 UTC (= T)

2023-03-16 WXT exposure map

WXT event image on GW contours

T to T+45 min

T to T+ 4 hr

T to T+ 8 hr

Search for X-rays from gravitational wave events

Quick ToO observation commands uplink within 10minuts after GW alert

(1) pointed obs. with WXT for 1-2 orbits

(2) a sequence of snapshots with FXT of 5 min each

(3) deep follow-up obs with FXT for promising candidates

Synergy with MAXI, XRISM

- MAXI
 - Sensitivity is better in EP
 - Sky coverage is better in MAXI
 - Complementary energy band: MAXI 2-30 keV vs. EP 0.5-4 keV
 - Monitoring soft-to-hard X-ray behaviors of
 - Galactic X-ray objects
 - Top-bright extragalactic sources
- XRISM
 - Spectroscopic observations of EP transients
 - XRISM ToO time scale ~ 1 day
 - Tidal disruption events
 - Ultraluminous X-ray sources

Summary

- Einstein Probe (EP) is the Chinese X-ray satellite mission for soft X-ray survey, launched in 2022
- International collaboration mission with ESA, MPE, (CNES)
- EP WXT will achieve the 10 times better sensitivity than the past surveys, using Lobster-eye optics and CMOS image sensors.
- Key devices: Lobster-eye mirrors and CMOS sensors are manufactured in Chinese companies
- Think good science collaborations, MAXI, XRISM