An X-Ray Study of the Starburst-Driven Outflow in NGC 253

NGC 253銀河の爆発的星生成に伴うアウトフローの X線による観測的研究

> 東京大学大学院理学系研究科物理学専攻 宇宙航空研究開発機構 宇宙科学研究所

三石 郁之

- 研究背景 (P3~P7)
 - ▶ 宇宙の物質循環
 - ▶ 爆発的星生成(スターバースト)に伴う銀河スケール(>kpc)のアウトフロー
 - ▶ スターバーストアウトフローの観測的な現状と残された課題
- 目的と手法 (P8 ~ P14)
 - ▶ 銀河スケールのスターバーストアウトフロー現象の観測的検証
 - ▶ スターバースト銀河NGC 253のX線観測
- 解析と結果 (P15~P26)
 - 中心核領域の解析
 - ▶ スーパーウィンド・ディスク・ハロー領域の解析
- 議論 (P27 ~ P33)
 - ▶ ハロー領域のX線ガスの起源
 - ▶ ディスク・ハロー領域のX線ガスのダイナミクス
 - ▶ ハロー内X線ガスの銀河間空間への流出可能性
- 本論文のまとめ (P34)

宇宙の物質拡散

- 銀河の外で多量の重元素が検出

▶銀河から"何らかの"メカニズムで重元素が流出

▶しかしながら重元素を含む物質の流出メカニズムは未解明

銀河スケール(> kpc)のアウトフローモデルとしては例えば以下の二つ

Starburst-driven Outflow (e.g. Veilleux et al. 2005)

- →爆発的星生成(スターバースト)に伴い多量に生成される星からの星風、
 光圧、超新星爆発などをエネルギー源として、周囲の星間物質を加熱
 ▶AGN-driven Outflow (e.g. King et al. 2003)
 - ➡銀河中心にあるブラックホールへ、物質が降着するさいに開放される 重力エネルギーにより周囲の星間物質を加熱

宇宙の物質拡散

- 銀河の外で多量の重元素が検出

▶銀河から"何らかの"メカニズムで重元素が流出

▶しかしながら重元素を含む物質の流出メカニズムは未解明

銀河スケール(> kpc)のアウトフローモデルとしては例えば以下の二つ

Starburst-driven Outflow (e.g. Veilleux et al. 2005)

- →爆発的星生成(スターバースト)に伴い多量に生成される星からの星風、
 光圧、超新星爆発などをエネルギー源として、周囲の星間物質を加熱
 ▶AGN-driven Outflow (e.g. King et al. 2003)
 - ➡銀河中心にあるブラックホールへ、物質が降着するさいに開放される 重力エネルギーにより周囲の星間物質を加熱

➡銀河スケールのアウトフロー(>kpc)を 化学的側面から検証を試みる

スターバーストアウトフロー

- Starburst-driven Outflow
 - ▶スターバーストに伴う多量の重力崩壊型(Type II)超新星爆発により加熱された X線で光る高温ガスが、周囲の星間物質を押しのけディスクの重力ポテンシャル、 最終的には母銀河の重力ポテンシャルを振り切り銀河間空間へと流出していくと 考えられている

 >X線ガスの化学組成は強力なprobe

 (Type II超新星爆発により豊富なα元素が供給)
 ●重元素汚染の進行はスターバースト領域
 →ディスク→ハロー領域

 >X線観測からガスのダイナミクスに制限をつける

 スターバースト領域 (-100 pc)

ハロ

(>kpc)

 $H\alpha$

HI

アウトフロー観測の現状

▶ 電離ガスや中性物質のアウトフローが観測(e.g. Heckman et al. 2000, Westmoquette et al. 2011)

▶スターバースト銀河からディスクより有意に広がった (> kpc) X線ハローが検出
▶一部のX線ハローガスからα元素汚染が報告 (NGC4631: Yamasaki et al. 2009)

▶高温ガスが数kpcにわたり断熱膨張である可能性が示唆 (M82: Strickland et al. 1997)

➡X線ハローガスはより内側のスターバースト領域起源だと解釈されている

残された課題

▶高温ガスのダイナミクスについてはディスク、ハロー共に観測的に調べる ことが難しく、特にハローについては観測的な制限は少ない

➡密度や温度などからその物理状態や速度に制限をつけていきたい

▶高温ガスの化学組成についても観測が乏しい(2例)

▶重元素汚染を議論するには統計が足りない (NGC 4631銀河: Yamasaki+ 2009)

➡ α 元素量を~factor 2の精度で求めることができる統計が必要となる

▶バックグランドの不定性のため、化学組成はハローのみ (M82銀河: Konami+ 2011) ➡ハロー内ガスの起源を議論するため、ディスク内部領域のX線ガスの 化学組成も調べる必要がある

本博士論文の目的 <目的>

<u>宇宙の重元素流出メカニズムと考えられている、銀河スケール(>kpc)</u>

<u>スターバーストアウトフローを化学的側面から検証し、</u>

高温ガスのダイナミクスへの制限も試みる

その検証のためには、

- ▶X線ハローガスがスターバースト領域起源であると考えて 矛盾しないかどうか
- ▶ディスク、ハロー内の高温ガスの物理状態を調べる つまり、

▶薄く広がった、これまで観測が難しかった

X線ハローガスをはじめ、ディスク内ガスの温度・密度分布、 化学組成(重元素汚染)に着目し、

▶ディスク内部領域からハロー領域まで連続的な化学組成

を調べる。

手法

▶近傍スターバースト銀河NGC 253のX線観測

▶なぜNGC 253なのか? ▶何がどこまで分かっているのか ▶本論文のストラテジー

近傍エッジオン・スターバースト銀河NGC 253

M82と並び、最も"well-studied"な系外銀河の一つ

近傍(~3.4 Mpc) => 明るい (Fx~7×10⁻¹² erg/s/cm²) ➡> 大きな視直径(ディスク ~27'×7') ➡ 詳細な空間構造 エッジオン(傾角~80°) - ディスクとハローの切り分けが容易 ダスト: L1-1000 µm ~2×10¹⁰ L_☉ 星: L_B~2×10⁹ L_O 典型的なスターバースト銀河 星生成率: SFR~1.4-9.5 M_o/yr 高温ガス: Lx~6×10³⁹ erg/s 全波長にわたる豊富な多波長観測 🚽 🗲 星、ダスト、中性物質など 他コンポーネントの情報 スターバーストアウトフローの観測的検証には最適なターゲット

多波長で見るNGC 253の特徴的な領域

Right ascension

X線で見るスターバースト銀河NGC 253

4つの領域にはX線放射も観測されているが、化学組成に着目した解析はない

中心核領域

▶大局的(>kpc)にはほぼ温度一様(kT~0.2, 0.6 keV) ▶100 pcスケールのコンパクトな 領域から鉄輝線(Fe XXV: 6.7 keV) (Bauer et al. 2008) を特徴とするハードなX線が検出 ▶スペクトルは非常に複雑 ▶起源は未知 Weaver et al. 2002 AGN ? Muller-Sanchez et al. 2010 Starburst ? Pietsch et al. 2001 スーパーウィンド領域 $\times 5$ l kpc ▶中心核領域から連続 的に放射がのびている **KDC** ディスク領域 (Weaver et al. 2002) ▶ディスク全面にX線ガスが存在

·領域

▶大局的(>kpc)にはほぼ温度一様(kT~0.2, 0.6 keV) の高温プラズマで説明できる(Bauer et al. 2008)

▶銀河面垂直方向に~10 kpcのX線ハロー

本論文のストラテジー

▶中心核領域のX線放射の起源の追求:

➡秒角(~20 pc)スケールの空間構造やスペクトル解析を行う

▶ハロー領域のガスの起源の追求:

→スーパーウィンド・ディスク・ハロー領域の化学組成を調べる

▶ディスク・ハローガスのダイナミクスへの制限:

➡ディスク・ハロー領域の密度・温度分布に着目し、制限を試みる

3つのX線天文衛星の特長を利用した解析

米: Chandra (1999-)

欧: XMM-Newton (1999-)

▶0.5秒角の高い空間分解能
 ▶点源とdiffuse放射の切り分け
 ▶混み合った複雑な領域に強み
 ▶中心核領域

 ▶10秒角の空間分解能と高い輝線感度
 ▶検出器バックグランドが高いため、 暗い領域では感度が落ちる
 ▶明るく広がった領域で利用

スーパーウィンド・ディスク

▶角度分解能は悪いものの、高い輝線感度
 ▶低く、安定した検出器バックグウンド
 ▶主に暗く、広がった領域で利用

ディスク・ハロー

- 解析と結果 -

中心核領域の解析 鉄輝線構造の検出 鉄輝線構造の分布

トスーパーウィンド・ディスク・ハロー領域の解析

▶解析の流れ

▶X線ガスの化学組成

中心核領域のX線スペクトル

Fe XXV輝線を特徴とする、非常に複雑なハードX線放射

中心核領域のX線スペクトル

Fe XXV輝線を特徴とする、非常に複雑なハードX線放射

Fe XXV (6.7 keV)輝線 →
放射起源を調べる必要がある

中心核特有の鉄輝線構造に着目

Fe I: >99.99 %, Fe XXVI: 99.89 %

鉄輝線構造を手掛かりに、独自の視点からX線放射の起源を探る

放射起源を探るため、まずは放射領域を調べる

R0: r2.2 kpc, R1: r20 pc (中心にAGNの存在が示唆), R2: 130×50 pc² (Muller-Sanchez et. al. 2010)

业本本版Trux [10 priotons 5 cm]						
	すざく	Chandra				
領域	RO	R1	R2	R1+R2		
Fe I	3.8+1.2-1.1	<0.6	$1.2^{+1.0}$ -0.8	$1.7^{+1.2}$ -1.0		
Fe XXV	8.4+1.4-1.3	$2.1^{+1.1}$ -1.0	$4.8^{+1.3}$ -1.2	$7.1^{+1.6}$ -1.4		
Fe XXVI	$2.3^{+1.2}$ -1.1	<1.0	<1.1	$1.7^{+1.3}$ -1.1		

鉄輝線flux [10-6 photons s-1 cm-2]

放射起源を探るため、まずは放射領域を調べる

R0: r2.2 kpc, R1: r20 pc (中心にAGNの存在が示唆), R2: 130×50 pc² (Muller-Sanchez et. al. 2010)

鉄輝線flux [10-6 photons s-1 cm-2]

	すざく	Chandra					
領域	RO		R1			R2	R1+R2
Fe I	3.8+1.2-1.1		<0.6			$1.2^{+1.0}$ -0.8	$1.7^{+1.2}$ -1.0
Fe XXV	8.4+1.4-1.3		$2.1^{+1.1}$ -1.0			$4.8^{+1.3}$ -1.2	$7.1^{+1.6}$ -1.4
Fe XXVI	$2.3^{+1.2}$ -1.1		<1.0			<1.1	$1.7^{+1.3}$ -1.1

▶Fe I, Fe XXVは100 pcスケールで広がっている

放射起源を探るため、まずは放射領域を調べる

R0: r2.2 kpc, R1: r20 pc (中心にAGNの存在が示唆), R2: 130×50 pc² (Muller-Sanchez et. al. 2010)

鉄輝線flux [10-6 photons s-1 cm-2]

	すざく	Chandra				
領域	RO	R	1	R2		R1+R2
Fe I	3.8+1.2-1.1	<0	.6	$1.2^{+1.0}$ -0.8		$1.7^{+1.2}$ -1.0
Fe XXV	8.4 ^{+1.4} -1.3	2.1^{+1}	.1 _{-1.0}	$4.8^{+1.3}$ -1.2		$7.1^{+1.6}$ -1.4
Fe XXVI	$2.3^{+1.2}$ -1.1	<1	.0	<1.1		$1.7^{+1.3}$ -1.1

▶Fe I, Fe XXVは100 pcスケールで広がっている ▶Fe XXV, XXVIは中心128×48 pc² (R1+R2)領域内のみから放射

放射起源を探るため、まずは放射領域を調べる

R0: r2.2 kpc, R1: r20 pc (中心にAGNの存在が示唆), R2: 130×50 pc² (Muller-Sanchez et. al. 2010)

鉄輝線flux [10-6 photons s-1 cm-2]

	すざく	Chandra				
領域	RO	R1	R2	R1+R2		
Fe I	$3.8^{+1.2}$ -1.1	<0.6	$1.2^{+1.0}$ -0.8	$1.7^{+1.2}$ -1.0		
Fe XXV	8.4 ^{+1.4} -1.3	$2.1^{+1.1}$ -1.0	$4.8^{+1.3}$ -1.2	$7.1^{+1.6}$ -1.4		
Fe XXVI	$2.3^{+1.2}$ -1.1	<1.0	<1.1	$1.7^{+1.3}$ -1.1		

▶Fe I, Fe XXVは100 pcスケールで広がっている

▶Fe XXV, XXVIは中心128×48 pc² (R1+R2)領域内のみから放射 ▶Fe Iは中心128×48 pc² (R1+R2)領域外にも分布している可能性有り

鉄輝線構造と多波長との相関

▶Fe XXV輝線強度が特に強い領域がある(P1, P3)
 ▶P1, P3は10 pcスケールで電波、中間赤外強度ピークと対応
 ▶CO輝線強度...星生成の材料となる分子雲を反映
 ▶中間赤外...若い星からの放射を反映

Fe XXV輝線も星生成に起因した放射源からの放射であることが示唆

P1領域のワイドバンドスペクトル 最も鉄輝線強度が高いP1(半径24 pc)領域のX線放射の物理量を調べる

▶高温側の鉄輝線を放射するプラズマ(kT~2.5^{+0.5}-0.3 keV)の物理量を算出

►L0.5-10 keV = $(8.6\pm1.4)\times10^{38}$ erg s⁻¹, Ethermal = $5.4^{+0.5}-0.6\times10^{52}$ erg M_{Fe} = 20 ± 2 M_☉, L_{Fe I} = $1.2^{+1.3}-0.9\times10^{37}$ erg s⁻¹, L_{Fe XXV} = $2.7^{+1.2}-1.5\times10^{37}$ erg s⁻¹

中心核領域の解析のまとめと起源の議論

▶Fe I, Fe XXVI輝線を各々>99.99 %, 99.89 %の有意度で初検出した

▶中心核領域のFe XXV輝線強度が、星生成に伴う電波や赤外線強度と数10 pcスケールで相関があることを初めて示した

鉄輝線のluminosity, thermal energy, 鉄質量から起源を議論した結果、

- ▶Fe I, XXV輝線を点源で説明するには極端に多い個数、空間密度が必要
- ▶Fe XXV輝線は星生成に伴う10-1000以下の超新星残骸で説明可能

▶中間赤外の観測結果とも一致 (Keto et al. 1999)

- ▶Fe I輝線は星生成に伴う非常に密度の濃い分子雲で説明可能
 - ▶電波観測の結果とも一致 (Sakamoto et al. 2010)

➡観測された鉄輝線は星生成領域に多量に存在する超新星残骸や その材料となる分子雲起源であると考えても矛盾しない (Mitsuishi et al. ApJL 2011, 742, 2, L31)

- 解析と結果 -
- 中心核領域の解析
 鉄輝線構造の検出
 鉄輝線構造の分布

▶スーパーウィンド・ディスク・ハロー領域の解析 ▶解析の流れ

▶X線ガスの化学組成

解析の流れ:領域の選定

解析の流れ: 各領域のスペクトル

この統計では代表的な2温度(kT~0.2, 0.6 keV)プラズマで表すことができる

各領域の化学組成とまとめ

▶ O, Ne, Mg, Siの4つの α 元素に対して全ての領域から化学組成比の抽出に成功

▶スターバースト銀河において、中心核近傍からハロー領域までに

およぶ連続した化学組成を求めたのは初めて

▶ハロー領域の組成比を<60 %の精度で求めたのはスターバーストで2例目

▶各領域のNe, Mg, Siの組成比は太陽組成比と比べてもα元素が豊富 ▶ハロー領域も含め、各領域のX線ガスはType II超新星爆発により

汚染が進んでいることを初めて明らかにした

- 議論 -

ハロー領域のX線ガスの起源 NGC 253におけるX線ガスのダイナミクス ディスク・ハロー領域のX線ガスのダイナミクス ハロー内X線ガスの銀河間空間への流出可能性

10 kpcにわたる3領域内の全てのα元素の組成比が90%の範囲内で一致
 ハロー領域のX線ガスはより内側のガスと同一起源と考えても矛盾しない
 α元素のうちNe, Mg, Si元素は太陽組成と比べても豊富
 Type II超新星爆発による汚染

10 kpcにわたる3領域内の全てのα元素の組成比が90%の範囲内で一致
 ハロー領域のX線ガスはより内側のガスと同一起源と考えても矛盾しない
 α元素のうちNe, Mg, Si元素は太陽組成と比べても豊富
 Type II超新星爆発による汚染

▶中心核領域のX線放射の一部は少なくともスターバースト起源
 ▶ハロー領域のX線ガスもType II超新星爆発により汚染
 ▶ハロー領域のX線ガスはディスク内部のガスと同一起源と考えても矛盾しない
 ➡スターバーストアウトフローの観測的検証に成功

ハロー領域のX線ガスの起源 NGC 253におけるX線ガスのダイナミクス ディスク・ハロー領域のX線ガスのダイナミクス ハロー内X線ガスの銀河間空間への流出可能性

ディスク・ハロー領域のハードネス比と輝度分布

ディスク・ハロー領域のX線ガスのダイナミクス X線ガスの密度・温度のポリトロープ関係を調べる $PV^{\gamma} = const \rightarrow T \rho^{1-\gamma} = const$

▶ディスクとハロー領域では密度・温度の依存性が異なっているように見える
▶ディスクとハロー領域のX線ガスのダイナミクスが異なっている可能性を示唆

ディスク・ハロー領域のX線ガスのダイナミクス X線ガスの密度・温度のポリトロープ関係を調べる $PV^{\gamma} = const \rightarrow T \rho^{1-\gamma} = const$

▶ディスク領域は断熱膨張、ハロー領域からは自由膨張 である描像を考えても矛盾しない

ハロー内X線ガスの銀河間空間への流出可能性

motivation:

- ▶ハロー内のX線ガスは自由膨張
 - ▶ハロー中のガスがゆっくり運動していると放射冷却により冷えてしまう
 ▶観測された温度プロファイルを実現するためにはある程度の速度が必要
 - ➡独自の視点から速度に制限をつけ、銀河間空間への流出可能性を探る

仮定: (1) X線ガスがハロー領域をディスク垂直方向に一定速度 (Vbulk)で移動 (2) 冷却過程としては放射冷却のみを考慮 (3) ハロー領域の密度分布は輝度分布から得られた分布を採用

放射冷却による温度分布と観測値との比較

観測された温度分布を再現するためにはV_{bulk} > 400 km/s 必要 ▶熱エネルギーと合わせると銀河ポテンシャル(~210 km/s)を超える可能性

本博士論文のまとめ

- ▶NGC 253の中心核・スーパーウィンド・ディスク・ハロー領域のX線ガスの 輝線構造や化学組成からその起源を、温度や密度分布からダイナミクス を調べた
 - ▶中心核領域にて観測されたFe I, Fe XXVI輝線の起源として、星生成に伴う分子雲および 超新星残骸で説明できることを初めて定量的に示した。
 - ▶スーパーウィンド、ディスク、ハロー領域の化学組成比に着目し、各領域の O, Ne, Mg, Siの化学組成比が90%のエラーの範囲内で全て一致することを初めて明らかにした。 またその組成比から、各領域のガスがType II超新星爆発により汚染されたもので あったことを初めて示した。
 - ▶以上から、中心核からハロー領域まで数kpcにわたるX線ガスが、中心 核の星生成に伴うガス起源だとしても矛盾しない検証結果を得た。
 - ▶ディスク・ハロー内の温度・密度を調べることで、ディスク領域は断熱膨張、 ハロー領域は自由膨張としても矛盾しない結果を初めて示した。
 - ▶ハロー内のガスが観測された温度を再現するためには少なくとも>400 km/sの速度が必要であるという下限値を初めて与え、ハロー内のガスの銀河間空間流出の可能性を示した。

予備トラペ

異なる重元素テーブル(Lodders, K (2003))での組成比

39

Parameter: Fe

0

Parameter: Fe

天の川銀河中心とのアナロジー

Super Star Cluster in NGC 253 (Keto et al. 1999) MIRAC2 (3 m望遠鏡) 12.4-13:2 um (メージ) 20.2 um (メージ) 25 「Ne II」 輝線イメージ

FIG. 1.—Average of the emission from the filter bands at 12.4 and 13.2 μ m. This approximates the off-line or continuum emission at 12.8 μ m, the location of the [Ne II] line. The lowest 10 contour levels are in steps of 0.075 and 0.15 Jy arcsec⁻¹ thereafter.

Super Star Cluster領域 (Thermal成分>90 %)

FIG. 6.—Spectrum at R.A.(1950) = $00^{h}45^{m}5''_{n}63$, decl.(1950) = $-25^{\circ}33'40''5$, the position of the star cluster. Note the PAH emission feature at 11.3 μ m and the [Ne II] line at 12.8 μ m.

FIG. 2.—[Ne II] line emission at 12.8 μ m. This image is formed from the difference of the emission in the 12.8 μ m filter band and the off-line emission in Fig. 1. The contour levels are in steps of 0.075 Jy arcsec⁻¹. Dashed lines indicate negative contours.

重元素パターンの他銀河との比較

重元素パターンの他銀河との比較

ディスク・ハロー領域のX線ガスの温度分布

ディスク・ハロー領域のX線ガスの密度分布

中心核領域のX線放射の起源

最も鉄輝線強度が高いP1(半径24 pc)領域におけるFe I, Fe XXVの起源を調べる

要求される候補天体の個数・空間密度

	CV or active binary	HMXB	SNRs	分子雲
Fe I	100-1000 [pc ⁻³]	103-4	NA	$1.0^{+1.1}$ -0.8× 10^{24} cm ⁻²
Fe XXV	500-5000 [pc ⁻³]	NA	10-1000	NA
系内の個数・空間密度	0.01-0.1 [pc ⁻³]	~100		

ハロー領域のX線ガスの下限速度

放射冷却により予想される温度プロファイルと観測値を比較し、速度に制限をつける ▶ディスク-ハロー間にガスが長く留まると放射冷却により冷えてしまう

▶観測された温度プロファイルを実現するためにはある程度の速度が必要

仮定: (1) X線ガスがハロー領域をディスク垂直方向に一定速度 (Vbulk)で移動 (2) 冷却過程としては放射冷却のみを考慮

(3) ハロー領域の密度分布は輝度分布から得られた分布を採用

ある時間 Δ tの間にガスは放射冷却により T → T' = T - Δ t×n(R)× Λ (T)/k R:ディスク垂直方向距離,T: 温度, Λ : emissivity k: ボルツマン定数, n: 密度 R → R' = R + Δ t×Vbulk

スターバースト銀河

 スターバースト銀河…通常の銀河の10倍以上の活発な星生成活動銀河
 近傍渦巻き銀河の数%であるが、近傍の全星生成の~25 %を担う
 高赤方偏移ではより多くの寄与
 スターバースト活動そのものは、 一生涯の中で起こりうるイベント

(McQuinn et al. 2010)

(Cucciati et al. 2011)

スターバースト銀河は宇宙の化学進化や物質循環を考える上で非常に重要

システマティック評価

化学組成については、

☑ISMのプラズマとして1 T, 2 T, 3 Tを採用したときのモデル依存性

☑星の放射モデルとしてpower lawを採用したときのモデル依存性

☑星の放射モデルに対し、温度を±3 keV

「
ゴ1桁にわたり絶対アバンダンス値を変える

のシステマティックを考慮しても全ての領域、全てのα元素に対して 統計エラーの範囲で一致