

- ブラックホール大気=降着円盤の研究
- 放射特性からモデル大気を同定
- ブラックホールの姿を捉える
- ブラックホールの特性を測定

「時間変動」

・大陽大気の時間変動 * フレア/プロミネンス * 磁気流体波動 BH大気の時間変動 * 降着円盤フレア * 円盤振動

SDOが捉えたプロミネンス形成(2月末)

BH大気のMHDモデル YK, Umemura, Ohsuga (2009)

Monte-Carlo 3-D Full Radiative Transfer → Spectra & Imaging (& Polarization) 第11回高宇連研究会「多波長で探る高エネルギー現象」(2011年8月9-11日)

銀河系中心の放射スペクトル

YK, Umemura, Ohsuga (2009)

銀河系中心の放射分布(フレア期)

YK, Umemura, Ohsuga (2009)

Size of BH shadow

BH大気変動のパワースペクトル YK (2004)

ブラックホールの質量とスピンが測定できる

スピンの測定方法

スピンの測定

ブラックホールからの光度変動の周期

恒星質量ブラックホール	天体名	X線光度変動の振動数 (Hz)	質量(太陽質量)
	XTE J1859+226	190	7.6 - 12.0
振動致比	GRO 1655-40	300, 450	6.0 - 6.6
3:2	XTE 1550-564	(92), 184, 276	8.4 - 10.8
= 450 : 300 = 276 : 184 ≈ 168 : 113	GRS 1915+105	(41), (67), 113, 168	10.0 - 18.0
銀河系の中心にある	XTE J1650-500	250	4.0 - 7.3
巨大ブラックホール「いて座A*」	観測日(世界時間)	観測波長	光度変動の周期(分)
168.222.33	2003.06.15 - 16	赤外線:K-band	16.8±2, 17.1
$1 \qquad \cdot \qquad 2$	2004.09	赤外線:1.60, 1.87, 1.90 (μm)	33±2
	2002.10, 2004.08	X線:2 - 10 (keV)	22.2
2:3	2007.04.04	赤外線:L-band	22.6
3:4:6	2007.07.22	赤外線:L-band	45.4
振動数比	2004.03.08 09:30 - 16.30	電波:43 (GHz)	16.8±1.4, 22.2±1.4, 32.2±1.5, 56.35±6
1/3:1/4:1/6=4:3:2	???	電波	18, 26

共振円盤振動の特徴:整数比の振動数、異なる波長で周期が同じ

光度変動と共鳴円盤振動の周期の関係

YK, Miyoshi, Takahashi, Negoro, Matsumoto (2010) MNRAS Letter

共鳴円盤振動法によるスピンの測定結果

YK, Miyoshi, Takahashi, Negoro, Matsumoto (2010) MNRAS Letter

銀河系中心ブラックホールのスピン測定結果

- ・共鳴円盤振動のケプラー周期に対応する光度
 変動周期を同定
- ユニークなスピンパラメータが存在する
 - スピンパラメータ: $a_* = 0.44 \pm 0.08$
 - 銀河系中心ブラックホールの質量: $M = (4.2 \pm 0.4) \times 10^6 M_{\odot}$

放射源から多波長の時間変動を計測し 銀河系中心ブラックホールのスピンを検証

ブラックホールの進化モデル

- 質量降着
- 角運動量輸送
 - 質量降着による角運動量の流入
 - BZ効果による角運動量の流出

 \mathcal{P}

 $e_{\rm in} = e_{\rm ms}$

 $\eta_{
m BZ}\equiv \overline{\dot{M}_{
m Edd}c^2}$

$$\frac{d\ln M_{\rm BH}}{dt} = \dot{M} e_{\rm in} - \frac{\mathcal{P}}{M_{\rm BH}c^2} \qquad \frac{dJ_{\rm BH}}{dt} = \dot{M} l_{\rm in} - \frac{\mathcal{P}}{\Omega_{\rm F}}$$

Moderski & Sikora 1996; Camenzind 2007

$${\cal P}\simeq rac{1}{8}rac{B_{\perp}^2 ilde{r}_{
m BH}^4}{c}\Omega_{
m F}\left(\Omega_{
m BH}-\Omega_{
m F}
ight) \quad B_{\perp}^2=8\pi p_{
m disk,max}/eta$$

 $ilde{r}_{
m BH} = c^2 r_{
m BH}/GM_{
m BH} = 1 + \left(1 - a_*^2\right)^{1/2}$ $k = \Omega_{
m F}/\Omega_{
m BH}$

M

 $au_{
m Edd}\equiv rac{\dot{M}_{
m Edd}}{\dot{M}_{
m Edd}}$

 $l_{
m in} = l_{
m ms}$

$$\begin{split} \frac{d\ln m}{dt} &= \frac{1}{\tau_{\rm Edd}} \left(e_{\rm ms} - \eta_{\rm BZ} \right) \\ \frac{da_*}{dt} &= \frac{1}{\tau_{\rm Edd}} \left[\left(l_{\rm ms} - 2a_* e_{\rm ms} \right) - 2\eta_{\rm BZ} \left(\frac{\tilde{r}_{\rm BH}}{ka_*} - a_* \right) \right] \end{split}$$

ブラックホールのスピンの平衡値と進化

YK, Miyoshi, Takahashi, Negoro, Matsumoto (2010) MNRAS Letter

スピンが小さい理由

ブラックホールの自転エネルギーが 抜き取られていた

恒星質量ブラックホール 超大質量ブラックホール a* = 0.44 ± 0.08

BH大気の時間変動の物理

- ◆ 共鳴円盤振動法でブラックホールのスピンパラメー タを測定した
- ブラックホールの質量とスピンの相関図を作成
- * ブラックホールの質量に依らないユニークなスピン パラメータが存在する $a_* = 0.44 \pm 0.08$
- * 大質量ブラックホールのスピンが小さいのは、自転
 エネルギーが抜き取られたからである