銀河中心領域の巨大分子雲からのX線放射

信川 正順 (京都大学白眉センター/理学研究科) 2011年3月 博士(理学)@京都大学

2011年8月10日 第11回高宇連研究会@早稲田大学

第11回高宇連研究会@早稲田大学

目次

- 1. 銀河中心領域
- 2. すざくを用いた観測結果

3-1. 鉄以外の中性元素からのK輝線の発見

3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域)

3-3. Sgr B2領域からX線放射の時間変動

- 3. 総合議論
- 4. まとめ

目次

1. 銀河中心領域

- すざくを用いた観測結果
 3-1. 鉄以外の中性元素からのK輝線の発見
 3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域)
 3-3. Sgr B2領域からX線放射の時間変動
- 3. 総合議論
- 4. まとめ

銀河中心ブラックホール Sgr A*

1-1. 銀河中心領域

銀河中心領域からのX線放射

- ~100pcに広がったX線放射・・・鉄輝線が付随
- Si, S, Ar, Ca, Fe, NiのHe-(電子が2個)H-状(電子が1個)輝線
 十中性輝線

1. 銀河中心領域

- 巨大分子雲 (T~10-100 K) との相関
- 外部粒子(E>7.1 keV, Fe-K吸収端)による鉄原子の電離

→ 蛍光放射(中性鉄輝線)

背後に高エネルギー現象が存在

1-2. 中性鉄輝線放射

中性鉄輝線の起源

Yusef-Zadeh+07

電波(20cm)

X線 (コントア)

1-2. 中性鉄輝線放射

低エネルギー宇宙線による衝突電離

●電子 (*E*=10—100 keV) (Valinia+00; Yusef-Zadeh+0

- 非熱的電波フィラメントとの相関 (GeV電子によるSynchrotron)
- 分子雲加熱 / ガンマ線放射
- ●陽子 (*E*~10 MeV) (e.g. Dogiel+09)
 - Sgr A*が供給?
 - もっと多角的な観測証拠が必要
 時間変動・・・衛星間の不定性
 - ・照射天体に対する有意な制限(Sgr A*?)

Sgr C

目次

1. 銀河中心領域

すざくを用いた観測結果 3-1. 鉄以外の中性元素からのK輝線の発見 3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域) 3-3. Sgr B2領域からX線放射の時間変動

3. 総合議論

4. まとめ

X線スペクトル

中性Fe, Niのみ(Koyama+07) 輝線状の残差 Gaussianを追加 →残差が解消

2-1. 多種元素の中性K輝線

	理論値 (keV)	測定値 (keV)
Ar	2.96	2.94±0.02
Са	3.69	3.69±0.02
Cr	5.41	5.41±0.04
Mn	5.90	5.94±0.03

→ 中性元素のK輝線

2-1. 多種元素の中性K輝線

フィット結果

吸収量 $N_{\rm H} = 6.8 \pm 0.2 \times 10^{22} \,{\rm cm}^{-2}$ プラズマ成分: (2温度) kT(低温) = 1.01±0.02 keV kT(高温) = 7.0 ±0.1 keV 元素組成 1-2 solar 中性成分: 吸収量(分子雲) $N_{\rm H} = 12(\pm 1) \times 10^{22} \,{\rm cm}^{-2}$ ベキ $\Gamma = 1.87 \pm 0.04$ 中性輝線の等価幅

← GCの典型値 6×10²² cm⁻² (Sakano+00, Muno+03, 06)

中性輝線の起源

中性輝線:
 外部粒子が原子を電離することによる
 連続成分:
 X線・・・・トムソン散乱
 電子・・・制動放射
 陽子・・・逆制動放射

各モデルではX線放射過程が 異なる

16/32

2-1. 多種元素の中性K輝線

等価幅から元素組成量を見積もる

2-1. 多種元素の中性K輝線

目次

- 1. 銀河中心領域
- 2. すざくを用いた観測結果

3-1. 鉄以外の中性元素からのK輝線の発見

3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域)

3-3. Sgr B2領域からX線放射の時間変動

- 3. 総合議論
- 4. まとめ

目次

- 1. 銀河中心領域
- 2. すざくを用いた観測結果

3-1. 鉄以外の中性元素からのK輝線の発見

3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域)

- 3-3. Sgr B2領域からX線放射の時間変動
- 3. 総合議論

4. まとめ

分子雲はどこからどのように 照らされているのか?

- 時間変動
 - 照射天体への有力な制限
- 最適対象・・・Sgr B2領域
 明るい分子雲が存在
 奥行位置が既知 (Ryu+09)
 GCプラズマが比較的弱い
- 2005年、2009年に同一衛星・
 同じ位置・ロール角で長時間観
 測
- CCDカメラの一部に不具合が あったので、3/4だけを使用

2-3. X線放射の時間変動

スペクトル

2-3. X線放射の時間変動

スペクトルフィット 吸収×(鉄輝線+連続成分) Fluxの変化 Fluxの変化 (連続成分) (6.4keV) Sgr B2 0.39±0.06 0.49 ± 0.15 M0.74 0.53 ± 0.10 0.53±0.21 相関した変化 2つの分子雲が同期して変化 早い時間変動 4年間に半減 X線照射起源 10|高宇連研究会@早稲田大学 23/32

スペクトル 輝線・連続成分が減少

議論:照射天体

 ・ 照射天体は銀河中心方向(Murakami+00)
 短時間の照射 (Δt < 10年)
 X線が分子雲中を移動 → 光度変化 (密度 ∝ X線強度)

2-3. X線放射の時間変動

- 2分子雲の同期した時間変動
 - → <u>同じ照射天体</u> 照射天体までの距離 > 15 pc (50光年)

2-3. X線放射の時間変動

議論:照射天体

唯一の候補: 巨大ブラックホール Sgr A* (M~4x10⁶ M_©)
 L_x > 4x10³⁹ erg s⁻¹ (現在見えるよりも数百年前)

25/32

目次

- 1. 銀河中心領域
- 2. すざくを用いた観測結果

3-1. 鉄以外の中性元素からのK輝線の発見
3-2. その他の6.4 keV 分子雲(Sgr B1、Sgr C領域)
3-3. Sgr B2領域からX線放射の時間変動

- 3. 総合議論
- 4. まとめ

- 全体の統一的描像
 - 起源は単一(Sgr A*)? / 個別天体?
 - 一度のフレア?

近傍の天体で説明可能なのは1天体のみ (M359.23-0.04: Nakashima+10)

Sgr A*からの単一フレアが起源とすると

良く一致する

3. 総合議論

	密度 (cm ⁻³)	距離(pc)	光度(erg s ⁻¹)
Sgr A	4×10 ³	50	8×10 ³⁹
Sgr B2	4×10 ⁴	110	4×10 ³⁹
M0.74-0.09	3×10 ⁴	170	5×10 ³⁹
Sgr B1	3×10 ³	90	8×10 ³⁹
M359.43-0.07	~5×10 ³	75	~8×10 ³⁹
M359.47-0.15	~5×10 ³	75	~8×10 ³⁹
G0.174-0.223	~1×10 ³	75	~8×10 ³⁹
M359.23-0.04	7×10 ³	100	5×10 ³⁹

 $\mathbf{\hat{x}}$

Sgr A*の数百年前のフレアが照らした分子雲

巨大分子雲の中にもX線を出さないものが存在

第11回高宇連研究会@早稲田大学

4. まとめ・・・の前に

- すざくを用いた銀河中心領域6.4 keV分子雲の観測結果
- 最も明るい分子雲(Sgr A): Ar, Ca, Cr, Mnの中性輝線の検出
 多種輝線の等価幅を使った新しい制限・・・<u>X線起源</u>
- Sgr B1、Sgr C領域の分子雲の詳細スペクトル
 強い鉄輝線: 等価幅 1–2 keV
- Sgr B2領域: 時間変動
 - 2つの分子雲から同期した時間変動を発見
 - 照射天体の必要光度 L > 10³⁸ erg s⁻¹ → SMBH Sgr A*の過去のフレア
- 銀河中心の6.4 keV分子雲の起源
 - Sgr A*からの単一フレアで説明可能

天文学会からの推薦 第1回は17名が選ばれた

両陛下と話している様子

4. まとめ

すざくを用いた銀河中心領域6.4 keV分子雲の観測結果

- 最も明るい分子雲(Sgr A): Ar, Ca, Cr, Mnの中性輝線の検出
 多種輝線の等価幅を使った新しい制限・・・<u>X線起源</u>
- Sgr B1、Sgr C領域の分子雲の詳細スペクトル
 - 強い鉄輝線: 等価幅 1-2 keV
- Sgr B2領域: 時間変動
 - 2つの分子雲から同期した時間変動を発見
 - 照射天体の必要光度 L > 10³⁸ erg s⁻¹ → SMBH Sgr A*の過去のフレア
- 銀河中心の6.4 keV分子雲の起源
 - Sgr A*からの単一フレアで説明可能
- 日本学術振興会育志賞を受賞

第11回高宇連研究会@早稲田大学

分子雲以外からの中性鉄輝線放射

- 分子雲以外からの
 - 広がった放射
- => 宇宙線電子/陽子?
 - Astro-H衛星(2013-)
 - Fermi衛星 (GeVガンマ線)

世界初の宇宙線測定法

- 宇宙線分布•••生成起源
- 銀河中心領域の高エネル
 ギー現象

京都大学 白眉プロジェクト

- ・毎年、分野を問わず20名程度を募集
- 特定教員(助教・准教授)として採用
- 5年任期: 中間評価などはない
- 研究費 100~400万円/年
- 平成24年度採用は平成23年3月から公募開始

1-1. 銀河中心領域

- 6.7 keV = He-like Fe 輝線 = 10⁸ Kの高温プラズマ
 これまでの星間空間の常識「中性領域(10–100 K) + 電離領域(10⁴ K)」
- ・ 銀河面に広がる成分(~10度)
 +銀河中心に集中する成分(~1度)
- 場所によりエネルギー中心が異なる###温度の違い/低温成分?

3つの鉄輝線

1-1. 銀河中心領域

Abundances 6.4 keV = cold medium (T~10 K) Metal abundances Sgr A* X-ray origin 1.6 Z_© electron origin $< 2 Z_{\odot}$ Proton origin 6.7 keV = hot plasma ($T^{\sim}10^{7-8}$ K)

 \bigstar

 $1-2 Z_{\odot}$

2-1. 多種元素の中性K輝線

中性輝線の起源

電子•••制動放射

X線と電子では反応断面積の Z(原子番号)依存性が異なる

異なるX線スペクトル

等価幅に大きな違い

※入射粒子のスペクト ル形状に依存

2-1. 多種元素の中性K輝線

中性K輝線の起源

- 入射粒子のスペクトル ullet観測値 Γ=1.9 X線起源 ベキは同じ 電子起源 ベキα~3
- スペクトル(等価幅) •電子起源•••~ 4 solar /パターンが合わない •X線起源••• ~1.6 solar プラズマ・・・ 1-2 solar

中性輝線はX線起源

Emission lines from the other atoms

- Other atoms than Fe should be exits
- Line intensity of atom M:

$$I_{\rm M} = \epsilon_{\rm M} \frac{\Omega}{4\pi} \int_{E_{\rm edge}}^{\infty} \left(1 - e^{-N_{\rm M}\sigma_{\rm M}}\right) \underline{AE^{-\Gamma}} dE$$

ε: fluorescence yeild, N: column density (cm⁻²) σ: cross section(cm²), E_{edge} : K-edge Spectrum of the irradiating source

Equivalent width (eV) (solar composition)

	Si	S	Ar	Ca	Cr	Mn	Fe
X-ray	1000	410	110	60	9	18	1200
ratio to Fe	0.8	0.3	0.1	0.05	800.0	0.02	
Electron*	53	43	13	10			360
ratio to Fe	0.15	0.12	0.04	0.03	_		

スペクトル スペクトル 輝線・連続成分が減少 (a) Sgr B2 +2005スペクトルフィット 0.01 +2009Counts s⁻¹ keV⁻¹ 吸収×(鉄輝線+連続成分) 10-3 Fluxの変化 Fluxの変化 10^{-4} $N_{\rm H}$ $10^{23}\,cm^{-2}$ (連続成分) (6.4keV) 5 Sgr B2 6.6 - 11 0.39 ± 0.06 0.49 ± 0.15 \approx 0 M0.74 4.6 - 8.40.53±0.10 0.53±0.21 -5 10 5 Energy (keV) 相関した変化 (b) M0.74-0.09 +20050.01 0.01 Counts s⁻¹ ke² 10⁻⁴ +2009早い時間変動 4年間に半減 10-3 ☐ X線照射起源 等価幅 1.0—1.5 keV (X線起源~1keV) 5 → 鉄の組成量 Z_{Fe} = 1.0—1.5 solar \approx <u>・</u>
鉄の吸収端 Z_{Fe} = 1.3±0.5 solar 5 Energy (keV)

2-3. X線放射の時間変動

Astro-H / SXS

48

Sgr B2分子雲と銀河中心の位置関係が分かる!!

第11回高宇連研究会@早稲田大学

Value	$I_{6.4 m keV}^{\ddagger}$	EW	$N_{ m H}$	Г	n^{\S}	$d_{\rm proj}^{\parallel}$	$d^{\#}$	L_{req}^{**}
Unit	$10^{-5} \text{ ph s}^{-1} \text{ cm}^{-2}$	keV	$10^{-23}~{\rm cm}^{-2}$		${\rm H~cm^{-3}}$	pc	\mathbf{pc}	$\rm erg~s^{-1}$
Sgr A	34.0 ± 1.0	1.15 ± 0.09	1.9 ± 0.1	1.87 ± 0.04	$4 imes 10^3$	30	50	$7 imes 10^{40}$
Sgr B2	13.6 ± 0.7	1.3 ± 0.2	8.4 ± 0.9	2.5 ± 0.6	$4 imes 10^4$	110	110	$6 imes 10^{40}$
${ m M}0.74{-}0.09$	5.1 ± 0.4	1.3 ± 0.3	5.7 ± 0.4	$2.5^{\dagger}^{\dagger}^{\dagger}$	$3 imes 10^4$	120	170	$8 imes 10^{40}$
Sgr B1	$2.8^{+0.2}_{-0.4}$	1.4 ± 0.3	$1.5_{-0.1}^{+0.2}$	$1.8^{+0.4}_{-0.5}$	$3 imes 10^3$	90	90	$1 imes 10^{41}$
${\rm M359.43}{-}0.07$	$6.4^{+1.0}_{-1.1}$	$2.2^{+0.3}_{-0.4}$	$0.9\substack{+0.5\\-0.4}$	$1.7^{+0.1}_{-0.2}$	$\sim 5 imes 10^3$	75	75	$1 imes 10^{41}$
$\rm M359.47{-}0.15$	$8.8^{+1.2}_{-0.9}$	$2.0\substack{+0.2\\-0.2}$	$0.8\substack{+0.4\\-0.1}$	$1.6\substack{+0.3\\-0.1}$	$\sim 5 imes 10^3$	75	75	$1 imes 10^{41}$
$\mathrm{G}0.174{-}0.233^{\dagger}$	0.6 ± 0.1	1.0 ± 0.2	0.8 ± 0.2	$1.7\substack{+0.1\\-0.2}$	$\sim 1 imes 10^3$	50	75	$1 imes 10^{41}$
$\rm M359.23{-}0.04^{\dagger}$	$3.4^{+0.6}_{-0.8}$	$1.2^{+0.2}_{-0.4}$	$3.1^{+0.4}_{-1.2}$	$2.9^{+0.6}_{-0.7}$	$7 imes 10^3$	100	100	$8 imes 10^{40}$

Table 6.1: Best-fit parameters of various 6.4 keV clouds studied in this thesis.

 \ast Errors are given at the 90% confidence levels.

† The parameters of G0.174–0.233 and M359.23–0.04 are referred to Fukuoka et al. (2009) and Nakashima et al. (2010), respectively.

‡ Absorption-corrected intensity of the 6.4 keV line.

§ Hydrogen densities in the clouds.

 \parallel Projected distance to the super-massive black hole, Sgr A*.

Actual distance to Sgr A^{*} on the assumption that the clouds align on the paraboloidal surface (see text).

* Required luminosity for the 6.4 keV line if the irradiating source is Sgr A^{*}.

^{††} Linked to the same value with that of Sgr B2.

