ブラックホール降着流におけるスペクトル 状態遷移の磁気流体数値実験

松元亮治(千葉大理)

MAXIで観測したブラックホール新星 XTE J1752-223

色ー光度図上の進化

状態遷移の理論モデル

Accretion Rate

ハードステート円盤形成の3次 元磁気流体シミュレーション

Initial state

unit time t₀=rg/c

Machida et al. 2003

光学的に薄い場合の輻射冷却考慮した 3次元MHDシミュレーション (Machida et al. 2006, PASJ 58, 193)

- 降着流が準定常的になってから輻射冷却項
 を加える
- ・ 熱制動放射を仮定 Qrad = Qb ρ^2 T^{1/2}
- *ρ* < *ρ* crit となる領域(コロナ)では冷却項 は加えない

冷却不安定性の成長

密度、温度等の時間変化

磁気圧優勢円盤の形成

Optically Thin Hot Disk Supported by Gas Pressure

Optically Thin Cool Disk Supported by Magnetic Pressure

降着率増増大に伴う降着円盤の進化

ソフトステートに遷移しない場合

コロナ密度
 が高くてジェッ
 トが噴出でき
 ない?

Negoro

遷移光度がバースト毎に違う

円盤ダイナモの大局計算(町田)

Azimuthally averaged B_φ component Time- Height map. Left): r=2kpc、Right):r=7kpc 各図左下のグレースケールの図は、Bφの赤道面対称性の時間進化を示し、白:対称、 黒:反対称を表している(赤道面上下で赤道面からの距離が等しい点の方位角磁場成分の 符号が同じなら白、異符号なら黒)。**円盤内磁束量は対称性に依存する**。

準周期振動(QPO)の出現

1-10HzのQPOはダイナモ起源?

方位角磁場分布とその時間変化 白線:β=1 黒線: dln|B|/dz < 0 Shi et al. 2010 局所3次元MHD計算結果

太陽活動のバタフライダイヤグラム

X-ray Image by HINODE Satellite

Optical image of sunspots by HINODE

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Butterfly Diagram of Sunspots (NASA)

Inner Torusが形成される場合に QPOが発生

Formation of the inner torus is essential for QPOs

QPO period is about 10 rotation of the inner torus

Machida and Matsumoto 2008

振動が局在化するとQPOが発生する

次世代降着円盤シミュレータの開発

磁気流体シミュレーションエンジン改訂

• HLLD Scheme (Miyoshi and Kusano 2005)

HLL スキーム

中間状態を1状態で近似

HLLD Scheme

中間状態を4状態で近似。 密度、磁場の不連続面を 扱うことができる。

Χ

HLLD法に基づく3次元MHDコード実装

コア数

HLLD法に基づく円筒座標系3次元磁気 流体コードの並列性能。HA8000におい て1024×32×1024メッシュを用いた場合の 100ステップあたりの所要時間

回転トーラスの磁気流体数値 実験結果。15回転後の密度

加熱・冷却を考慮したジェット伝播 の3次元磁気流体数値実験結果。 オレンジは低温高密度領域。

輻射と磁気流体の相互作用計算 磁気流体 ╋ 輻射流体 B $\rho(t,x,y,z), v(t,x,y,z), P(t,x,y,z)$ + $I(t,x,y,z,v,\theta,\phi)$ $+\boldsymbol{B}(t,x,y,z)$ $\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{n} \cdot \nabla I = \eta - \chi I$ 輻射輸送方程式を解く 演算量を減らすため、光線方向 $N^6 \times N_{step}$ についての平均化が必要

1次モーメント(M1)法の実装

 $\partial_t D + \nabla \cdot (D \boldsymbol{v}) = 0,$ $\partial_t E_t + \nabla \cdot \boldsymbol{F}_t = 0,$ $\partial_t \boldsymbol{F}_t + c^2 \nabla \cdot \boldsymbol{P}_t = 0,$ $\partial_t \boldsymbol{B} + \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) = 0,$ $\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B} = 0,$ $\partial_t E_r + \nabla \cdot \boldsymbol{F}_r = S_E$ $\partial_t \boldsymbol{F}_r + \nabla \cdot \boldsymbol{P}_r = \boldsymbol{S}_F,$

流東拡散制限近似は用いず、 輻射輸送方程式の1次のモー メント式を解いて輻射流束を 求める。陽的解法が可能。

Takahashi, Ohsuga et al. 2011 (投稿準備中)

まとめと議論

- 大局的な3次元MHDシミュレーションにより、
 、降着円盤の時間発展を現象論的なパラメータαを導入せずに調べることが可能になった。
- ・輻射冷却を考慮することにより、降着円盤の 状態遷移や準周期振動の発生等を再現で きる。
- ハードステートからソフトステートへの遷移は
 円盤が磁場によって支えられた状態を経る。
 この状態が明るいハードステートに対応する。
- ・3次元輻射磁気流体コードを整備中。

End