あかり全天サーベイマップを用いた 超新星残骸の高温プラズマ中のダストの観測

O石原大助、金田英宏、古澤彰浩、國枝秀世(名古屋大学) 鈴木仁研(ISAS/JAXA)、Bon-Chul Koo(ソウル大) Jae-Joon Lee(ペンシルベニア州大)、Ho-Gyu Lee(トロント大) 尾中敬(東京大学)

Tycho超新星残骸の赤外線放射の起源

青: X線(Suzaku) 緑: 12CO (CGPS) 赤: 赤外線(AKARI)

- Introduction
- AKARI による観測データの紹介
- ・赤外線放射の起源と物理状態の考察(全体、NE、NW)
- Summary
- 「あかり」全天サーベイデータ

塵に蔽われたAGNの検出

1. Tycho's SNR

4.1 -6.1 keV 1.63-2.26 keV 0.95-1.26 keV, (Warren+ 2005)

- 1572年 Tycho Brahe による観測
- 距離 1.5~3.1 kpc (Chevalier+ 1980 etc.)
- サイズ 8' (5.3pc)
- Type Ia
- Extensively studied in X-ray,
 Radio and Optical
- Ejecta物質の膨張

(Furuzawa+ 2009)

- 赤外線を出している + IRASで検出 (Schwaltz 1995) + ISO/ISOCAM (Douvion+ 2001)

1. Tyho's SNR

X-ray (Suzaku 0.1–12 keV) Molecular cloud (12CO) Hot dust (AKARI 18um) Expansion velocity from VLA 1375 Hz (Reynoso+ 1997)

「あかり」の赤外線画像(9,15,18,24,65,90,140,160um) から、ダストの物理状態と起源を探る。

Wavelength (um)

3. Infrared images (AKARI)

- あかり IRC 9um + SNRと異なる形状 … ISMのPAH蛍光輝線 - あかり IRC 15,18,24um +シェル状の放射 + NEとNWに明るい箇所 …SNRからのダスト放射 - あかり FIS 65, 90um +シェル状の放射 + NEとNWに明るい箇所 …SNRからのダスト放射 + 左上に構造 …ISMのダスト - あかり FIS 140, 160um + Inter stellar cold dust

65 90 140 200

4.1 赤外線放射の起源 ダスト温度・半径方向の分布から

⇒ 衝撃波で加熱されたISM

4.1 赤外線放射の起源 ダスト温度・半径方向の分布から

4.1 赤外線放射の起源 ダスト温度・半径方向の分布から

ダスト温度

PAH .

⇒ シェルの外側(衝撃波の近く)で高い

ダスト(silicate)破壊のタイムスケール

、プラズマ中でのspatteringによるダストの破壊

ISMダストが衝撃波で加熱され、 post-shockプラズマの中で衝突破壊されている ⇒ 色温度~100 Kのシェル構造

⇒150 yr ⇔ 500 yr (SNRの年齢)

PAH (small graphite)の破壊タイムスケール 同じサイズのダストの1/100~1/1000

⇒< 1 yr ... ほぼ壊滅</p>

レの外側(衝撃波の近く)で高い

ate)破壊のタイムスケール

□でのsnatteringによるダストの破壊 熱され、 「で衝突破壊されている エル構造 (cate)、a=1100、1=0.4c0 (\、101=10 cm-3 yr ⇔ 500 yr (SNRの年齢)

graphite)の破壊タイムスケール

とくに明るいところ(NEとNW)の 赤外線放射の起源(物理)は?

Reverse shock

(Warren+ 2008)

5. まとめ

- Tycho's SNRを、赤外線(「あかり」9um~160um)で観測。
 ⇒ ダストの物理状態(温度分布・加熱源)と
 その起源(ISM or ejecta)を考察。
- ISMダストが、シェル状に広がる衝撃波に過熱され プラズマ中で破壊されてゆく様子が見えている。
- NEに大量のISMが存在し、残骸と interaction をしている。 (さらに、SNRから直線状に伸びる加熱源が示唆される)
- NWICISMは存在しないが、Hot dustが見られる。
 - ガス-高温ダスト比が少ない(ガスが少ない)
 - 不連続面の内側で光っている ⇒ Ejecta からのダスト生成?
- Type laでもダスト生成の兆候の発見は初めて。
 ⇒ 現在・初期宇宙での物質生成史の研究にインパクト
- 「あかり」赤外線データによる超新星残骸の解析の重要性

「あかり」中間赤外線全天サーベイデータ

> あかり(2006~2011)
 日本の赤外線天文衛星
 ターゲット指定観測
 全天サーベイ観測
 9、18μm
 65, 90, 140, 160μm

あかり9µm全天画像 (Ishihara et al. 2006, 2008)

≫ あかり(2006~2011) 日本の赤外線天文衛星 ターゲット指定観測 全天サーベイ観測 9,18µm 65, 90, 140, 160μm 2008) 白鳥座X領域 (青)あかり 9µm帯 (青) IRAS 12µm帯 (赤) IRAS 25µm帯

(Ishihara et al. 2010)

AKARI detections of hot dust in luminous infrared galaxies (Oyabu, Ishihara et al. 2011)

「あかり」中間赤外線 全天サーベイソースを追観測

- 「あかり」近赤外線分光
 高温(~500K)ダスト成分の検出
- 可視スペクトル
 AGNの兆候がない
- ・塵に埋もれたAGNと考えている。

5. まとめ

- Tycho's SNRを、赤外線(「あかり」9um~160um)で観測。
 ⇒ ダストの物理状態(温度分布・加熱源)と
 その起源(ISM or ejecta)を考察。
- ISMダストが、シェル状に広がる衝撃波に過熱され プラズマ中で破壊されてゆく様子が見えている。
- NEに大量のISMが存在し、残骸と interaction をしている。 (さらに、SNRから直線状に伸びる加熱源が示唆される)
- NWICISMは存在しないが、Hot dustが見られる。
 - ガス-高温ダスト比が少ない(ガスが少ない)
 - 不連続面の内側で光っている ⇒ Ejecta からのダスト生成?
- Type laでもダスト生成の兆候の発見は初めて。
 ⇒ 現在・初期宇宙での物質生成史の研究にインパクト
- 「あかり」赤外線データによる超新星残骸の解析の重要性