多波長で探る超新星残骸の 高エネルギー現象

大平 豊 高エネルギー加速器研究機構(KEK)

----- 内容 -----

超新星残骸と宇宙線

超新星残骸からの多波長スペクトル

超新星残骸のこれまでの観測

超新星残骸のこれからの観測

まとめ

- 注意 -

同時刻?同じ領域から? → 時間分解、空間分解も重要

超新星残骸(SuperNova Remnant)

超新星残骸(SNR) : 星の大爆発の残骸

電波、赤外線、可視光、紫外線、X線、GeV-γ線、TeV-γ線で観測

SNRは銀河宇宙線の起源と考えられている

線写真

Kepler

http://chandra.harvard.edu/photo/2007/kepler/

低エネルギー宇宙線の組成

最近の宇宙線の観測

AMS-02の結果が楽しみ

Superbubble内のSNRsで説明可能[Ohira&loka(2011)]

Diffusive Shock Acceleration(DSA)

Axford 1977, Krymsky 1977, Blandford&Ostriker 1978, Bell 1978

超新星残骸からの放射

	Continuum	Line
e- e+	Synchrotron radiation Inverse Compton scattering Electron bremsstrahlung Jitter radiation ←阪大の寺木さん (IC of plasmon) の講演	Atomic lines [Hα
p Ion	π ⁰ decay gamma ray Proton bremsstrahlung Recombination Two photon transition	{ C, N, O, etc. Annihilation line of positronium { 511keV
e+	Positron annihilation in flight Positronium annihilation to 3 photons	լ эттке∨ Molecular lines ∫ CO
dust	Thermal emission from dust	H_3^+ , H_2^+

超新星残骸からの多波長スペクトル

多波長スペクトルから分かる物理量(入門編)

$$\nu F \nu_{\pi 0}$$
より $N_{CR,p} n_{gas}$ を求める。

$$\lambda_{mfp} = \eta_g r_g$$

 t_{acc} = $t_{syn,cool}$ \rightarrow $E_{e,max}$ \propto $\eta_g^{-1/2}u_{sh}B^{-1/2}$ \rightarrow $\nu_{syn,max}$ \propto $\eta_g^{-1}u_{sh}^2$ より η_g を求める。

 $vFv_{syn}/vFv_{IC} = U_B/U_{CMB}$ よりBを求める。 $\rightarrow v_{syn,max}$ より $E_{e,max}$ を求める。 $\rightarrow vFv_{syn,max}$ より $N_{CR,e}$ を求める。

これまでの観測結果

超新星残骸(SNR)の観測

Cassam-Chenai et al. 2008

Acero et al. 2010

電波:電子の GeV までの加速 (~300 SNRs)

X線:電子の TeV までの加速 (~10 SNRs)

GeV-γ:陽子の TeV までの加速 (~10 SNRs)

TeV-γ: 電子 or 陽子の 10TeV までの加速(~10 SNRs)

10^{15.5} eV?, 10⁵⁰ erg/SN?

SN1006

X線の半径方向の分布 下流で暗くなっている シンクロトロン冷却 → B~100μG

Berezhko et al.,2003, A&A, 412, L11

0 ¹⁵	Model	E _{cut,e} [TeV]	$E_{\text{cut,p}}$ [TeV]	$W_{\rm e}$ [10^{47} erg]	$W_{\rm p}$ [10 ⁵⁰ erg]	<i>Β</i> [μ G]
]	Leptonic	10	_	3.3		30
	Hadronic	5	80	0.3	3.0	120
	Mixed	8	100	1.4	2.0	45

Leptonic の問題: Small B、TeVが広がりすぎ、TeV specrum

Hadronicの問題: s_{proton} = 2.0 < s_{electron} ~ 2.2

Acero et al.,2010, A&A, 516, A62

Abdo et al., 2011, ApJ, 734, 28

Fermi LAT (24 months) HESS (Aharonian et al. 2007) Berezhko & Voelk 2006 Ellison et al. 2010 (π⁰ dominated) Zirakashvili & Aharonian 2010 (IC/π⁰ mixed) Zirakashvili & Aharonian 2010 (IC/π⁰ mixed) Energy [MeV]

RXJ1713

Uchiyama et al., 2007, Nature

~1yr の変動→加速、冷却が~1yr→ B~1mG

GeV-TeVのスペクトルはICを示唆 $\rightarrow vFv_{syn}/vFv_{IC}$ より B~10 μ G

 $W_p < 0.3 \times 10^{51} (n/0.1 cm^3)^{-1} erg$

Tycho

X線フィラメントの厚み

→ B~100μG

接触不連続面と 先進衝撃波の間が狭い

→ 圧縮率 r > 4

 $s = (r+2)/(r-1) \rightarrow s < 2$

dN/dE∝E-s

Case	$D_{\rm kpc}$	n_H	E_{SN}	$E_{p,tot}$	$K_e p$	$E_{p,max}$
	[kpc]	$[{\rm cm}^{-3}]$	$[10^{51} { m erg}]$	$[10^{50} { m erg}]$	10^{-4}	${ m TeV}$
Far	3.50	0.24	2.0	1.50	4.5	540
Nearby	2.78	0.30	1.0	0.61	7.0	340

電波、ガンマ線スペクトルは s = 2.3 < 2 (Cas A も s > 2) 加速された電子が少ない

Middle-aged (10⁴yr) SNRs の観測

SNRは分子雲とぶつかっている。

Broken power law

E_{CR,break} ~ 10 GeV

Very steep spectrum (N(E)∞E⁻³)

Uchiyama et al, 2010, ApJL T. Inoue et al., 2011, ApJ Ohira et al., 2011, MNRAS

SNRから逃げたCRからの放射?

SNRからの宇宙線の逃走

 $R_{d.}(E_{high})$

$$R_{sh} = R_{Sedov} \times \begin{cases} (t / t_{Sedov}) & (t < t_{Sedov}) \\ (t / t_{Sedov})^{2/5} & (t > t_{Sedov}) \end{cases} \qquad R_{diff} \propto (Dt)^{1/2}$$

t > t_{Sedov} でCRはSNRから逃げ始める。

高いエネルギーの宇宙線は、より早く広がる

$$R_d(E) = [4D(E) t]^{1/2} \propto E^{0.5\gamma}$$

$$D(E) = \chi \left(\frac{E}{10 \text{GeV}}\right)^{\gamma} \text{cm}^2 \text{ s}^{-1}$$

(Galactic mean value γ =0.3-0.6)

$$f_{esc} \propto Q_s(E) / R_d(E)^3 \times exp[-(r/R_d)^2]$$

 $\propto Q_s(E) E^{-1.5\gamma}$

 $f_{esc}(E)$ は $Q_s(E)$ よりソフトになる。

Aharonian & Atoyan(1996)

Review paper: Heng, 2010

Ηα

衝撃波上流は完全電離とは限らない(f_i~0.1-0.5)

(Ghavamian et al. ApJ 2000,2002)

Cassam-Chenai et al. ApJ 2008

荷電粒子は無衝突衝撃波で減速、加熱中性粒子は無衝突衝撃波を通過

電荷交換された暖かい中性からのHα輝線

Ηαでわかること

Lee et al.,2010, ApJ, 715, L146

衝撃波上流からも狭いHα (Lee et al.,2010)

狭い方と広い方の強度比 $\rightarrow T_e / T_p$ (ただし、CRの影響が無視できるときだけ)

狭い方の幅 → 上流の温度

広い方の幅 → 下流の温度

RCW86の場合、固有運動から衝撃波速度 u_{sh} ~6000±2800 km/s が観測されている。

$$T_p = 3m_p u_{sh}^2 / 16 = 70 \text{ keV}$$

広い方の幅は、2.2 keVの温度に対応

→ CRがエネルギーを持ち去った?

狭い方の幅も広い → T_{up} ~ 30-100eV → CRが上流を加熱?

> Hは衝撃波構造、磁場増幅に重要? Ohira et al.(2009), Ohira & Takahara (2010)

Indriolo et al., 2010 Tavani et al., 2010

Galactic CR によるイオン化 Cosmic-Ray Ionization Rates (10⁻¹⁷ s⁻¹)

Spectrum	ζ2	ζ2
	$E_{\rm cut} = 2 {\rm MeV}$	$E_{\rm cut} = 10 {\rm MeV}$
	(Diffuse)	(Dense)
Propagated ^a	1.4	1.3
Broken power law ^a	36	8.6
Carrot ^a	37	2.6
Hayakawa et al. (1961)	165	96
Spitzer & Tomasko (1968)	0.7	0.7
Nath & Biermann (1994)	260	34
Kneller et al. (2003)	1.3	1.0
Ip & Axford (1985) ^b	3.6	2.7
Herbst & Cuppen (2006)	0.9	0.9
Observational inferences	$\sim 40^{\rm c}$	\sim 3 ^d

Indriolo et al., 2009

LSR Velocity (km s⁻¹)
$$\sigma_{\text{ion}} = 2\pi (0.285) \frac{e^4}{m_e c^2 \text{Ry}} \frac{Z^2}{\beta^2} \left[\ln \frac{2m_e c^2 \beta^2}{0.048(1 - \beta^2) \text{Ry}} - \beta^2 \right] = 1.23 \times 10^{-20} \frac{Z^2}{\beta^2} \left(6.2 + \log_{10} \frac{\beta^2}{1 - \beta^2} - 0.43\beta^2 \right) \text{ cm}^2$$

H₃⁺ による吸収線の観測 → H₃+ の量からCR ionization rate を求める。

CR + H₂
$$\rightarrow$$
 CR + H₂⁺ + e⁻
H₂ + H₂⁺ \rightarrow H₃⁺ + H
H₃⁺ + e⁻ \rightarrow H₂ + H or H + H + H

Ionization = recombination $\zeta_2 n(H_2) = k_e n_e n(H_3^+)$

$$\Diamond \zeta_2 \sim 10^{-15} \text{ s}^{-1} > 10^{-16} \text{ s}^{-1}$$

これからの観測

超新星残骸からの多波長スペクトル

Fig. 3. Left: spectral energy distribution of Cas A, as measured with BeppoSAX-PDS (Vink et al. 2001, red) and INTEGRAL-IBIS (Renaud et al. 2006b, green), assuming a magnetic field of ~300 μG, a spectral energy index of -2.56 (corresponding to a radio-spectral index of $\alpha = -0.78$), and a background plasma with $\Sigma_i \langle n_i Z^2 \rangle = 10 \text{ cm}^{-3}$. The bremsstrahlung spectra were calculated using the analytic cross sections of Haug (1997). The model spectra are shown for $n_e t = 0, 2 \times 10^9, 2 \times 10^{10}, 2 \times 10^{11}$ and 2×10^{12} cm⁻³ s (from top to bottom). Right: spectral energy distribution of Tycho's SNR, as measured by the BeppoSAX-PDS. The theoretical curves are for $B = 10 \mu G$, $\alpha = -0.6$, and $\Sigma_i \langle n_i Z^2 \rangle = 4 \text{ cm}^{-3}$. The different curves are for $n_e t = 0, 1 \times 10^{10}, 1 \times 10^{11} \text{ cm}^{-3}$ s.

H₂+

Fig. 2.— Predicted emission spectra of H_2^+ (red in online version) and H_3^+ (black online) for the reference model. The surface brightness is displayed in Jy nsr⁻¹ where 1 Jy = 10^{-26} W m⁻² Hz⁻¹ and 1 nsr = 10^{-9} steradian of solid angle. In the figure, $\eta = 10^9$ s⁻¹ cm⁻² is used as a typical value in this context (see text).

Becker et al, arXiv:1106.4740

Fe satellite lines

MNRAS, 1979

 $f(E, 20 \times 10^6 \, \text{K})/n_e$

Nuclear lines

Fig. 1. Calculated gamma-ray spectrum for the specific case of Cas A using the assumptions described in the text. 10⁶ photons are binned into energy intervals of widths ranging from 2 to 5 keV as described in Ramaty et al. (1979). For example, the ¹²C line at 4.4 MeV has a flux that is comparable to the sensitivity of COMPTEL. Note that the continuum component caused by nonthermal electron bremsstrahlung is not taken into consideration here.

511keV, proton Bremss, radiation from 2nd e[±]

511keV line が Advanced Compton Telescope で観測可能! 陽子の制動放射が ASTRO-H で観測可能! 場合によっては2nd e[±]のシンクロトロンも ASTRO-H で観測可能!

Radiation from escaping CR e

SNRから逃走したCR e⁻ からの放射がCTA, LHAASO で観測可能 逃走過程、SNR付近の拡散係数などが明らかになる

まとめ

CRの観測より、

AMS-02の結果が楽しみ

Heの方がpよりハードなべキ。 スタンダードDSA理論と違う。 全成分が200GeV/n付近でハードになる。Superbubble origin? 重元素は、ダストになりやすいものの方が多く加速されている。ダスト加速?

電波観測より、電子スペクトルはdN/dE∝E-2よりソフト。スタンダードDSA理論と違う。

一部のSNRのHα観測は、CRが沢山加速されていることを示唆。他のSNRは?

若いSNRのX線観測は、磁場増幅(~100μG)を示唆。年老いたSNRの磁場は?

Gev-TeVの観測により、SNRからのICや $\pi^0 \rightarrow 2\gamma$ が観測されている。

ICは、B~100µGと矛盾。 本当にB~100µG? 本当にIC? $\pi^0 \rightarrow 2\gamma$ はCRスペクトルがdN/dE∝E-2よりソフト。スタンダードDSA理論と違う。

ラインでも非熱的粒子を探れる。(H2+, H3+, satellite lines, Nuclear lines, 511keV)

ラインやnonthermal e⁻やpの制動放射を観測することで、低エネルギー領域 (10keV~GeV)のCRの量やスペクトルが明らかに。 DSA理論の検証

CTA, LHAASOは、SNRから逃げたCRの放射(IC, $\pi^0 \rightarrow 2\gamma$)が観測可。 最高エネルギー、エネルギーごとの空間的広がりを調べることで、 逃走時期、磁場の進化、SNR付近の拡散係数が明らかに。

ベキ型分布

粒子と壁の1次元的散乱

散乱後
$$\Delta p = 2 \frac{u}{v} p$$

Shock の場合

$$\frac{\Delta p}{p} = \delta = \frac{4(u_1 - u_2)}{3v} \quad \xrightarrow{n 回往復} \quad p_n = p_0(1 + \delta)^n \sim \exp(n\delta)$$

上流から拡散的(等方的)に下流に入るCR flux: n_{cR}v/4 十分下流に流れるCR flux: n_{cR}u₂

下流に流れる確率:P_{esc} = 4u₂/v、 上流に戻る確率:P_{ret} = 1 - P_{esc}

$$N(>p_n) \propto (1 - P_{esc})^n \sim exp(-nP_{esc}) \propto p_n^{-3u_2/(u_1 - u_2)}$$

$$f(p)dp \propto dN(>p)/dp \propto p^{-s} \qquad s = \frac{u_1/u_2 + 2}{u_1/u_2 - 1}$$

銀河内の宇宙線の拡散

Leaky box model

$$\frac{d N_{CR}}{d t} = -\frac{N_{CR}}{t_{osc}(E)} + Q_{sour}(E) \xrightarrow{\text{\frac{\text{E}}{T}}} N_{CR} = t_{esc}(E) Q_{sour}(E)$$

$$t_{\rm esc}(E) = L_{\rm size}^2 / D_{\rm diff}(E)$$
, $D_{\rm diff}(E) \propto E^{\gamma}$, $Q_{\rm sour}(E) \propto E^{-s}$

$$N_{CR}(E) \propto E^{-(s+\gamma)}$$
 B/C観測 $\Rightarrow \gamma = 0.3 - 0.6$ 宇宙線観測 $\Rightarrow s + \gamma = 2.7$

s = 2.1 - 2.4 衝撃波加速の理論(s = 1.5 - 2)と矛盾?

これまでのモデル

宇宙線は衝撃波で加速 N(E) ∝ E-s

時間とともに最高エネルギーは増加 自由膨張期でほぼ決まる

$$t_{acc}$$
 (E) $\propto Eu_{sh}^{-2}B^{-1}$

衝撃波が弱くなり、マッハ数が1になると、SNR内の宇宙線が解放される

$$Q_{sour}(E) \propto E^{-s}$$

スペクトルは粒子の種類によらない

銀河内を伝搬して、地球にたどり着く

$$D_{diff}(E) \propto E^{\gamma}$$
, $N_{obs} \propto E^{-(s+\gamma)}$

異なるエネルギーを持った宇宙線は同時に解放される。

Escape of Cosmic Rays

SNR
$$R_{sh} = R_{Sedov} \times \begin{cases} (t_{age} / t_{Sedov}) & (t_{age} < t_{Sedov}) \\ (t_{age} / t_{Sedov})^{2/5} & (t_{age} > t_{Sedov}) \end{cases}$$
 $R_{diff} \propto (Dt_{age})^{1/2}$

Free expansion phase (t < 200yr): age limited

$$E_{\text{max}} = E_{\text{knee}} (t / t_{\text{Sedov}})$$
 (B should be amplified)

Sedov phase ($t < 10^5 \text{ yr}$): escape limited

SNRから逃げた宇宙線のスペクトル

 $E = mc^2$ のCRの数 $N(mc^2) \propto t^{\beta}$, $\beta \leq 0$ 最高エネルギー $E_{max} \propto t^{-\alpha}$, $\alpha > 0$

Y. Ohira, K. Murase, R. Yamazaki, 2010, A&A, 513, A17

10GeV 付近の折れ曲がり

分子雲 SNR L₁

SNの前のstellar wind を考えると、

 $L_1 \sim 10pc$ Weaver et al.(1977)

 $R_{sh} = L_1$ のとき、宇宙線は一瞬で逃げる

その時の SNR 内の E_{max}~10GeV

$$E_{max} = t^{-\alpha}$$
, $\alpha \to \infty$

$$s_{esc} = s + \beta / \alpha \rightarrow s$$

Ohira, Y., Murase, K., Yamazaki, R., 2011, MNRAS, 410, 1577

非一様な陽子とヘリウムの密度比

Ohira, Y. & loka, K., 2011, ApJL, 729, L13

マツハ数、圧縮非、ベキ指数

