X-ray Study of Stellar Winds with Suzaku

ISAS/JAXA

Grosdidier et al. 1998

兵藤 義明 (京大宇宙線D3) 2009/03/17 高宇連研究会

・ 恒星からの (比較的) 安定した質量放

<mark>単</mark> 風のtype	星のtype	dM/dt	駆動力
コロナ型	小質量星	10 ^{_14} <i>M</i> o/yr (太陽)	熱運動
放射圧型	大質量星	10 ⁻⁶ –10 ⁻⁴ <i>M</i> o/yr	光子

- UV光子から外向きの運動 量を獲得し、超音速 (~2000 km/s)に加速。
- 宇宙における化学的・力学的 進化に超新星爆発と同程度の寄与。

• 恒星からの (比較的) 安定した質量放

違風のtype	星のtype	dM/dt	駆動力
コロナ型	小質量星	10 ^{_14} <i>M</i> o/yr (太陽)	熱運動
放射圧型	大質量星	10 ⁻⁶ –10 ⁻⁴ <i>M</i> o/yr	光子

- UV光子から外向きの運動
 量を獲得し、超音速
 (~2000 km/s) に加速。
- 宇宙における化学的・カ学的 進化に超新星爆発と同程度の寄与。

• 超音速の星風は様々な過程で衝撃波を形成

 2003年、Dunneら (ROSAT) とTownsleyら (Chandra) がHII領域M17から拡がった軟X線放射の検出を報告

• 2003年、Dunneら (ROSAT) とTownsleyら (Chandra) がM17星雲から拡がった軟X線放射の検出を報告

4

・放射機構はやはり不明。

- 2005年7月10日鹿児島から打ち上げ
- (XRT+XIS)×4 + HXD FI×3+BI

衛星の性能比較

()		有効面積	角度	
衛星	祝野	@1keV	@8keV	分解能
Suzaku	18'×18'	1000	500	2'
Chandra	17'×17'	600	40	0."5
XMM-Newton	d ~ 30'	1800	600	15"

- 拡がった天体に対する
 バックグラウンドレベルが
 平均的に低い
- ・軌道が円に近いためバック
 グラウンドが安定している。

解析と議論

- ・距離2.1 kpc、年齢100万年、53個のOB星が作る星雲
- ・2視野を計64時間観測。拡がった放射のほぼ全体を捉え

- ・X線の起源は光学的に薄い高温プラズマ
- ・温度は300万K (0.25 keV) ぐらい。

M17 (5)

- ・熱伝導によって冷えた領域は ~10 km/sで厚みを増す。
- ・×年齡(1 Myr)∼a few pc
- ・プラズマの温度はプラトー状の 構造のあと急激に小さくなる。

	1	2	3	typical error
kT (keV)	0.55	0.56	0.18	0.01
N _H (10 ²¹ cm ⁻²)	0	0.6	3.6	0.3
O/Fe (solar)	0.2	0.2	0.6	0.1

手前の天体

カリーナ星雲(3)

赤色の領域 (diffuse 3)

最も近くに位置するWR25が作った 星風 bubbleだとする。

WR25 $\mathcal{O}M \sim 3 \times 10^{-5} M$ o yr⁻¹ = M17 $\mathcal{O}OB$ association

ただし、大きさは1/3程度。 周囲の密度への依存性小 →おそらく年齢の違い(10⁵yr)

M17と同様の星風bubble。ただし少し若い?

まとめ

- ・すざく衛星を用いて銀河系内の大質量星
 団M17、Carina Nebulaの観測を行った。
- ・高階電離したO, Ne, Fe, Mgの輝線を検出。→高温プラズマ(300万K)
- ・空間構造は理論モデルと無矛盾。
- ・Carina Nebulaのdiffuse放射は一部だけ が星風バブルであるようだ。

	1	2	3	typical error
kT (keV)	0.55	0.56	0.18	0.01
N _H (10 ²¹ cm ⁻²)	0	0.6	3.6	0.3
O/Fe (solar)	0.2	0.2	0.6	0.1

手前の天体

カリーナ星雲(3)

赤色の領域 (diffuse 3)

最も近くに位置するWR25が作った 星風 bubbleだとする。

. WR25の*M*~3×10⁻⁵ *M*o yr⁻¹ = M17のOB星団

ただし、大きさは1/3程度。 周囲の密度への依存性小 →おそらく年齢の違い(10⁵ yr)

M17と同様の星風bubble。ただし少し若い?

カリーナ星雲(3)

・緑色の領域 (diffuse 1, 2)

吸収がほぼ0。この領域に典型的な 値 (4×10²¹cm⁻²)よりも有意に小さい。

カリーナ星雲とは関係ない、 手前の天体。たまたま視線上 で重なっているだけ。

熱的で拡がった天体であること、 Feが多い (O/Fe~0.2) ことから Ia SNRである可能性

カリーナ星雲(4)

赤色の領域 (diffuse 3)

吸収はN_H~4×10²¹ cm⁻²。 カリーナ星雲に付随。 年齢3 Myrなので超新星爆発 起こっている可能性がある。 O3星がまだ主系列にいるので SN起こした星はO3よりearly Ib, IcなどのSN→O/Fe大 (e.g., Thielemann et al.1995)

観測値と矛盾。

アーチーズ星団 (2)

スペクトルは3成分からなる。

- ・kT~2 keVの熱的放射(赤)
- •中性鉄輝線(青)
- 「~0.6のパワーロー (緑)

吸収量 (N_H~1.5×10²³cm⁻²) は銀河中心と矛盾なし。

このうち熱的放射 (赤) は3つの 点源 (WR星) からの放射の 足し算で説明される。

中性鉄輝線とパワーローの成 分は点源には見られないので 拡がった成分だと考えられる。

中性鉄輝線(低温)は自らX線を放射しない。考えられる機構は

1. X線照射 (連続成分はThomson)
 2. 電子衝突 (連続成分は制動放射)

- 中性鉄輝線強度 (2×10⁻⁵ s⁻¹ cm⁻²) を説明するためには 照射源はГ~1、10⁷ s⁻¹ cm⁻² keV⁻¹ (@10 keV)が要求。 Archesの星では足りない (スペクトルの形が違う)
- 2. N(E)=E⁻²を仮定すると10³⁹ erg s⁻¹ (10-100 keV)が要求。 Archesの星風では足りない(L_{wind}~10³⁸ erg s⁻¹)
- → 外部からのエネルギー供給が必要。

Discrete Sources

WR 25(WN6+O4)の時間変動

e = 0.56, P_{orb} = 208 day (Gamen et al. 2006, 2008)

•X線放射が大質量星の星風同士の相互作用によることの証拠。

HD 93205 (O3+O8)

- ・今回観測した大質量星
 同士の連星の中で唯一
 hard成分検出なし。
- · $D_{min} \sin i \sim 3 \times 10^7 \text{ cm} (\sim 2 \text{R}_*)$
- · 近星点移動(0.03deg/cycle)
 (Morrel et al. 2001)
- ・星風が超音速に加速される前 に衝突しているのでは?
- ・大質量星同士の連星系で
 あってもある程度 (several×R_∗)
 の距離が必要。

大質量星のhardなX線放射

	WR 25	HD 93250	OI352	CXOGC 174645	A1N	A1S	A2	M17 OB assoc.
kΤ _{high} (keV)	2.3	3.1	3.8	3.8	2.0	2.5	2.1	4.0

- ・WR 25以外の大質量星も熱的なスペクトル(Fe K輝線) を持ち、その温度は2-4 keV. →おそらく星風-星風衝突。
- ・確認するためにはX線のモニタリング観測、可視-赤外の 分光観測が必要。