High Energy Emission from AGN Jets 活動銀河核の高エネルギー放射

片 岡 淳 (Jun KATAOKA) 東エ大 → 早稲田大学理工学研究所 /物理学及応用物理学専攻 kataoka.jun@waseda.jp

On behalf of the Fermi/LAT collaboration

Outline

AGN jet: on "various scales", across the EM spectrum.

- Large scale jets
 - Physics of FRI jets
 - Physics of FR II jets
- Blazar region
 - Classical view
- Modern view in Fermi-era
- Jet Launching & particles
- Disk-jet connection.
- Long-term monitoring.

Jet on kpc-Mpc

FR I and FRII

- Low power $(10^{42-44} \text{ erg/s})$
- Low Γ
- Core brightened
- Bending (ram pressure)
- Decelerating (mass entrainment)

- High power (10⁴⁴⁻⁴⁶ erg/s)
- High Γ
- Edge brightened
- Collimated, straight jet
- Deceleration negligible?

AGN Jet = Acceleration Site

- The jet-like feature in M87 was first reported in Curtis 1918 (!).
- Electron synchrotron life times in equip fields t_{opt} ~ 100 yr, whilst ,the projected length of jet much larger, D ~ 1.5 kpc.
- This suggests in situ acceleration within "knots".
- ✓ internal shock due to velocity irregularities in the beam (Rees. 1978)

FR-I: M87 w/ Chandra

- Single SED can fit radio to X-ray: Electron sync model can work. \rightarrow X-ray emitting electrons: $E_e = 10 \sim 100$ TeV for $B_{eq} \sim 100 \mu$ G.
- But, we should always keep in mind various <u>assumptions</u>;
 (1) "B ~ B_{eq}" to get various jet parameters.
 (2) emitting volume is "same" for all wavebands.
 (3) filling factor ~ 1 and uniformity... etc

FR-I: X-ray Flare in M87

- The outburst of HST-1 was detected, w/ increased X-ray intensity of <u>factor ~50</u>.
- 1" corresponds ~ 77 pc at M87 distance - emission region must be very compact or "<u>knotty</u>".
- VLBA observation discovered superluminal radio features within HST-1, that could be associated with excess <u>TeV emission</u> reported by H.E.S.S.

Inner Knot X-ray Emission ?

- Not only bright X-ray knots, but continuous, <u>diffuse emission</u> <u>between knots</u> have been observed.
- For the nearest FR-I Cen-A, "double-horn" profile in trans. direction.
 - ✓ Stratified jet fast spine & slow sheath ?
 - ✓ Turbulent acceleration (Fermi II) at work over the jet volume ?

FRI: Velocity Shear

- Decelerated jet modeling w/ shear layers successfully explain observation of 3C 31 and 3C 315..
- <u>"Velocity gradient</u>" is naturally expected via the Jet-Env. interaction.
 - ✓ Entrains ambient medium.
 - ✓ Transfers momentum and energy to ambient medium.
 - ✓ Mixing layer, deceleration of jet ...

De Young 1986, Aloy+ 1999, Leismann+ 2005, Mizuno+ 2008

- Mass entrainment works very effectively via <u>K-H instability</u>.
- Even in relativistic jets, 3D simulation shows development of shear/mixing layers w/ <u>turbulent B field</u>.

Turbulent Acceleration

- Stratified jet "spine" + "layer".
- Unlike Fermi-I, turbulent acceleration (Fermi II) can produce very hard electron distribution.
- If field is very turbulent (ξ~ 1), electrons "pile-up" as it never escape from the region.

$$\begin{array}{c} t_{acc} \sim \frac{3l_{e}}{c} \left[\frac{c}{V_{A}} \right]^{2} \sim 5 \times 10^{9} \gamma_{8} \, B^{-1}_{100\mu} V^{-2}_{A,8} \, [s] \\ t_{esc} \sim 3 \left[\frac{L}{V_{A}} \right]^{2} \frac{c}{l_{e}} \sim 6 \times 10^{15} \gamma_{8}^{-1} \, B_{100\mu} L^{2}_{100pc} \, [s] \\ \hline t_{esc} / t_{cool} \sim 10^{7} \, (B_{100\mu G})^{3} \, (l_{100pc})^{2} \, \xi^{-1} \end{array}$$

where $\xi = U_{\rm B}/U_{\rm T}$

Ostrowski 2000, Stawarz & Ostrowski 2002 Stawarz & Petrosian 2008

FR II/QSOs: bright X-ray jet

Ultra-luminous X-ray jets:

- NOT smoothly connecting w/ radio-optical synchroron.
- IC/CMB is more likely if $\Gamma_{jet} \sim 10$ on Mpc scale ($\propto \Gamma_{jet}^2 U_{CMB}$).

Consistent w/VLBI observation ($\beta_{app} \sim 13.3$: Edwards+ 06)

More and more samples: http://hea-www.harvard.edu/XJET/

FRII: Hotspots

Stawarz+ 2007

- X-ray emission of hot-spots in <u>high-power</u> FR II jet is consistent w/ synchrotron self-Compton (SSC) model close to U_e ≈ U_B.
- The hot-spots in <u>low-power</u> jets is too bright in X-ray, suggesting instead synchrotron in origin (Hardcastle et al. 2004).
- Multiple structures often observed; relic? swing of jet-head?

FR II: X-rays from Lobe

- X-ray emission is most likely due to IC/CMB under approximate equipartition between U_e and U_B (0.3 < B_{IC}/B_{eq} < 1.3)</p>
- Several "warnings", however, due to (1) extrapolation of radio spectrum to lower energy, (2) unknown filling factor, (3) contamination of cluster gas (see discussion in Worrall et al. 2009)

- Hard X-ray signal was successfully detected from the west lobe of Fornax A up to 20 keV. (Tashiro+ 2008)
- Hard X-rays are produced by same electrons of γ ~ 5,000 (or E ~ 2.5 GeV) that emit synchrotron in GHz band.

B_{IC} =1.4 μ G, almost consistent w/ equip. B value of B_{eq} =1.6 μ G.

- Distribution of 44 AGNs (56 knots, 24 hotspots, 18 radio lobes).
- A very simple assumption that apparent deviation from equipartition is due to Doppler enhancement, i.e. beaming factor δ.
- Actually, extremely X-ray bright knots can be explained if <u>δ ~ 10</u>, which is consistent w/ PKS0637-752 (classified also as blazars.)

- IR imaging of the jet of 3C 273 by SPITZER clearly confirms that optical jet emission is dominated by the 2nd, high E component.
- Both the radio and optical components are linearly polarized to a similar degree of ~ 15% "double" synchrotron???
- Smooth connection between X-ray and optical: same origin?

The 4th strongest FRII radio galaxy in 3C catalog.

First clear detection of "X-ray counter-jet" by Chandra.

✓ If jet is highly relativistic, $\delta \approx 1/\Gamma_i$, hence Doppler "de-beamed". Again, "double Sync" or "Sync tail" more likely?

 $\checkmark E_e \sim 200 \ (\Gamma_i / 10) \ \text{TeV}$; presence of ultra rela electrons.

Warning Signal (III)

JK+ 08a

0

1.0

0.5

0

-20

X-ray

-10

0

Angular Distance (arcsec)

10

20

- Various jet structure visble: transversal
 - ✓ narrow X-ray jet.
 - \checkmark spine vs sheath visible ?
 - Iongitudial
 - ✓ peak offset: ~ 5 kpc.
 - ✓ sync cooling? NO!

Much more complicated than we have originally thought ...

- It has oftern been suggested that min. pressure in FRI /FRII jets is normally below that of external X-ray emitting medium.
- Maybe significant contribution from protons and/or thermal electrons, but still premature (e.g., Croston+ 08).
- Independent approach from "cocoon-dynamics" also suggests invisible matter in FR II jets (e.g., Ito+ 08).

Jet on sub-pc

Blazars

Blazars: jet closely aligned to our line of sight.

• SL motion, one-sided jet $\Rightarrow \beta_{jet} \sim 0.99 \text{ c}$ or $\Gamma_{jet} \gtrsim 10$

"Double peaks" over two decades in v.

- Sync + Inv. Compton, but wide variety
 HBL, LBL, QHB
- Most powerful objects peaks at low $v \Rightarrow$ "Blazar Sequence"

Now We have Fermi !

205 preliminary bright LAT sources (>10 σ)

■ 57 QHBs, 42 BL Lac (HBL+LBL), 6 unID, and 2 radio galaxies.

Note, EGRET found fewer than 30 sources above 10 σ in its lifetime.
 Typical 95 % error is less than 10'.
 Katagiri's talk

Internal shock in blazars

JK+ 2001, Tanihata+ 2001, 2003

- Rapid variability suggests: $R \sim c t_{var} \delta \sim 10^{-3} pc.$
- Only little variability below t_{var} <<1d : "Internal shock"</p>
 - Modulation of relativistic outflows : D ~ 10 Γ_{jet} ² R_g ~ 0.01 pc

sub-pc jet (the first site of E-dissipation)

• "Jet power" & "seed photons" control the blazar sequence.

- Significant evolution *only* at X-rays, i.e., no significant variation at UV-optical: $E_p \sim 1 \text{ keV} \rightarrow 10 \text{ keV}$.
- Usually, this has been argued as sudden increase of electron γ_{max}. (e.g., Takahashi + 1996, 2000, JK+ 1999, 2000)

■ $v_{max} \propto \xi^{-1} \delta v_s^2$ (ξ: gyro factor, δ: beaming factor, v_s : shock speed) Is it really expected???

Revealing "Variable" Component

■ <u>"Variable component"</u>: $\Gamma_1 = 1.6$, $\Gamma_2 = 2.1$, $E_{brk} \sim 3 \text{ keV}$

✓ Fresh electrons "being accelerated".

✓ Innermost (D ~ 10^{3-4} r_g) region of the jet.

Steady component": $\Gamma \sim 2.0$, $E_p << 1 \text{ keV}$ (exp cutoff)

 \checkmark Already cooled electrons at large distance.

✓ Fermi II (stochastic acceleration) at work ?

Ultra Fast Variability of HBL

PKS 2155-304: HBL, z=0.116

- July 2006 flare: ~7 Crab, VHE strongly correlated with X-rays.
- Ultra-fast variability as short as min scale by H.E.S.S.
- Fermi Campaign:
- 11 nightly obs. using HESS, ATOM, RXTE (+ Swift)
- Constraints on spectral shape, especially EIRB.

Fermi Observation of HBL

Submitted to ApJ

■ <u>SSC model fitting</u> VHE: ~0.2 Crab, $\Gamma_{int} \approx 2.5$ HE: $\Gamma_L = 1.61 \pm 0.16$, $\Gamma_h = 1.96 \pm 0.08$, $E_b = 1.0 \pm 0.3 \text{ GeV}$ X-ray: $\Gamma_L = 2.36 \pm 0.01$, $\Gamma_h = 2.67 \pm 0.01$, $E_b = 4.4 \pm 0.5 \text{ keV}$

Model parameters

(3-component power-law):

 $p_0{=}1.3,\,p_1{=}3.2,\,p_2{=}4.3$ where dn/d ϵ \propto ϵ^{-p}

```
break energies: \epsilon_1=7.4GeV, \epsilon_2=120GeV
```

R=1.5×10¹⁷cm, δ =32, B=0.02G

- Some thought...
- X-rays are produced by highest energy electrons, $\varepsilon > \varepsilon_2$
- HE and VHE are produced by electrons with $\epsilon_1 < \epsilon < \epsilon_2$
- X-rays can vary independently of VHE emission (cf. July 2006 flare)

28

E [MeV]

Suzaku observation of QHB (1)

"Seed" for the ERC process is UV photons reflected by the BLR. E_{diff} ~ 10 eV, L_{diff} ~ 10⁴⁶ erg/s

- Before the "<u>blazar zone</u>", fast /slow shells up-scatter UV via the "bulk-Comptonization" to E_{BC} ~ Γ_{BLK}² E_{diff} ~ 1 keV.
- BC luminosity depends on the jet composition : $L_{BC} \propto (n_e/n_p) L_{jet}$

 $rac{1}{2}$ | $\Gamma \sim 20$, r ~ 1pc, n_e/n_p ~ 10, B~ 0.6 G, L_e/L_p ~ 0.05

Suzaku observation of QHB (2)

Watanabe+ 09

A distant QHB at z = 2.98 (Sambruna+ 06)

Non detection of BC component , but useful UL on particle contents in jets: $n_e/n_p \leq 7.3$.

But, still mystery...the lack of BC emission in general may mean:(1) jets cannot be fully formed/accelerated too close to the BH?(2) cold electrons cannot carry bulk of the jet power?

Note on the Blazar region ?

Marscher+ 2008

Bright feature in the jet causes a "<u>double flare</u>":

 (1) optical to TeV flare w/ 240° PA rotation.
 (2) delayed radio flare.

 First flare: plasma passing through the helical B field,

(towards the observer) Second flare: plasma crosses a standing shock ?

Jet may not fully be formed/accelerarted in blazar zone?

Fermi Observation of QHB

- <u>3C454.3 at z = 0.859</u> Detected by EGRET, AGILE. Very active since 2000.
- Fermi-LAT data show rapid, quasisymmetric, flares on a time scale of ~3 days.
- First observation of a <u>spectral break</u> above 100MeV.

A possible interpretattion:

Direct signature of an intrinsic break in the energy distribution of the radiating particles?

Contact Author: G.Madejski & B.Lott

2 radio galaxies, NGC 1275 and Cen A have already been detected above 10 σ level.

Not surprising – detections of several RGs reported by EGRET.

EGRET Detection of RGs

Hartman+ 2008

- Reanalysis of EGRET data significantly increases the number of AGNs detected at > 100 MeV (Nandikotkur+ 07, but see Casandjian & Isabelle 08)
- Centaurus A, 3C 111, NGC 6251 were detected, indicating close similarity of the SED w/ blazars.

(Hartman+ 08; Mukhergee+ 02; Sreekumar+ 99)

New Comer: NGC 1275 ?

- Perseus cluster hosts the giant elliptical galaxy NGC 1275 at its center. Shocks and ripples are clearly evident in deep Chandra image.
- In radio, NGC 1275 hosts the exceptionally bright radio source Per A, also known as 3C 84.

AGN, or dark matter annihilation ?

SED and Long-term Trend

Submitted to ApJ

Clear detection but Fermi LAT, but tight UL given by EGRET.
 > significant variability on time-scale of years to decades.
 > could be associated with ejection of new radio knot?

Either one-zone SSC ($\Gamma_j = 1.8$) or decelerating jet flow ($\Gamma_j = 10 \rightarrow 2$) model represent s the data well.

Contact Author: J.Kataoka

Summary

I have reviewed most recent observational highlights from large scale jets & blazars viewed at high energies.

- Recent survey of large-scale jets with CXO have brought us new insights on the kpc/Mpc scale jet - jet structures, turbulent acceleration, ultra relativistic electrons above 100 TeV.
- Unprecedented sensitivity of Fermi/Suzaku provides new challenges to the blazar physics - Unification of blazars and radio galaxies are being more common.

More will come soon w/ Fermi!