2020年3月2日 高宇連,博士論文発表会

On the Origin of PeV Electrons in the Crab Nebula かに星雲におけるPeV電子の起源の解明

荒川 真範 (立教大学)

1.1 パルサー星雲・かに星雲

*スピンダウン光度:

パルサー星雲:

パルサーが単位時間あたりに失う回転エネルギー

パルサー風と周辺物質が衝突(終端衝撃波の形成)してできた天体 パルサーの回転エネルギーを源として光る、効率が良い電子の加速器

<u>かに星雲</u>:

- ・自転周期 = 33 msec (パルサー)
- ・スピンダウン光度: 5×10³⁸ erg s⁻¹ (天の川銀河で一番大きい)
- ・距離 = 2 kpc
- 1054年に起きた超新星爆発の残骸

(藤原定家の『明月記』)

- ・電波からTeVガンマ線まで20桁以上で観測
- X線、TeVガンマ線では、明るい「標準光源」
- ・パルサー星雲から唯一フレアが観測

青色:X線(Chandra) 緑色:可視光(HST) 赤色:電波(VLA)

1.4 pc

1.2 >100 TeVガンマ線放射の観測

かに星雲は明るい

- > 100 TeVガンマ線が宇宙の天体から初めて検出(HAWC, Tibet ASγ)
- TeVガンマ線スペクトルは~ 300 TeVまでなめらかに接続

Abeysekara+ 2019

1.3 磁気流体力学(MHD)モデル

かに星雲からの非熱的放射はMHD flowモデル+シンクロトロン放射/
 逆コンプトン散乱(IC)で説明できる (e.g. Kennel&Cronitii, Atoyan&Aharonian 1996)
 電子は終端衝撃波近傍で注入、放射冷却&断熱損失を伴って伝搬

1.4 10 TeV電子の加速領域

- H.E.S.S.によるTeVガンマ線で空間的拡がりが観測
 - 観測された拡がりはMHDモデル+シンクロトロン/IC放射で説明可能
- =>~10 TeV電子は終端衝撃波近傍で加速

TeVガンマ線で測定されたextension

1.5 かに星雲からのフレア

かに星雲は定常で明るい

AGILE&Fermiによる突発的な増光、フレアの観測 Tavani+(2011) & Abdo+ (2011)

- peak flux > 3.5×10⁻⁶ ph cm⁻² s (Bühler and Blandford, 2014), 定常かに星雲の約5倍以上
- ・1年に1回程度
- ・ dayスケールの時間変動 => 強磁場 ~1 mG >> 星雲内の平均磁場~100-200 μG
- radiation reaction limit (~160 MeV)を超えるカットオフ
 => 磁気リコネクションによるPeVまでの加速?

ピーク時(phase 7)のSED

• PeV電子が終端衝撃波で加速されている観測的証拠はまだない

=> 100 TeVガンマ線観測から加速領域への磁場へ制限 (Khangulyan, Arakawa, Aharonian 2020)

- フレアの起源は謎。今までは明るいフレアに着目
- => 弱いフレアの検出からフレアへの理解を深める (Arakawa+ submitted to ApJ)

2.1 基本的アイデア

- >100µGの環境下では電子の加速効率はシンクロトロン放射冷却で決まる
 - ・シンクロトロン放射の典型的なエネルギー $\hbar\omega_{syn} \propto E_e^2 B$ Ee:電子のエネルギー (電子のエネルギー)×(磁場)^{0.5} =>加速効率と対応
 - ・シンクロトロン放射冷却 $t_{cool} \propto E_e^{-1}B^{-2}$

高エネルギー電子からの放射=>加速領域の磁場をトレース

- シンクロトロン+IC => 放射領域(≒加速領域)の磁場が求まる
- > 50 TeVのIC放射はクライン・仁科効果によって標的光子はCMBが 支配的

電子スペクトルの仮定のみから加速領域の磁場が決まる・100 TeVガンマ線の観測の精度が重要
・得られた磁場はMHDシミュレーションへの制限も可能になる
*シンクロトロン放射だけでは磁場は決まらない。

2.2 one-zone model計算: 磁場への制限

⁽Khangulyan+ 2020)

2.3 終端衝撃波でPeVまで加速の可能性

• > 100 MeVのガンマ線シンクロトロン放射

 $\hbar\omega_{\rm syn} \simeq 6 \left(\frac{E}{1 \text{ PeV}}\right)^2 \left(\frac{B}{100 \ \mu\text{G}}\right) \text{ MeV} \longrightarrow \text{-4 PeV} \mathcal{O} \ \ensuremath{\mathbb{R}} = 100 \ \mu\text{G})$ • ジャイロ半径 $r_{\rm g} = 0.04 \left(\frac{E}{4 \text{ PeV}}\right) \left(\frac{B}{100 \ \mu\text{G}}\right)^{-1} \text{ pc} \simeq 0.4 R_{\rm ts}$

10

- ・慣習的には終端衝撃波近傍で加速された電子、 "wind electrons"が100 MeV
 のシンクロトロン放射
 - 1-100 MeV ガンマ線スペクトルはなめらかではない
 - ・加速領域に閉じ込めることが困難(加速領域 ~ ジャイロ半径)

100 MeVのシンクロトロン放射は別の電子成分が起源の可能性

2.4 two-zone model計算: 新しい電子成分¹¹

放射領域の磁場(Maxwellianが検出されるか)がLHAASOによって検証可能

・強磁場起源であればフレアとの関係性も示唆

3.1 Fermi-LATによる観測

- ・定常だと考えられていたかに星雲から予期せぬフレアの発見、
 未だ起源は不明
- ・過去の解析では >3.5×10⁻⁶ ph/cm²/sの明るいフレアのみに着目
- かに星雲からの~100 MeVシンクロトロン放射は高い変動性

現在までに発見されているフレアより強度が弱いフレア, ''small flare" が存在する可能性がある。

Fermi-LATによる7.4年間のデータ&Off-pulse解析から系統的& 低バックグラウンドな解析のもと、"small flare"の探査を行った。

*LATの空間分解能(~5 deg at 100 MeV)ではかに星雲とかにパルサーを区別できない ため、かにパルサーからの放射が大きなバックグラウンドとなる

3.2 かに星雲からのガンマ線データ解析

解析の流れ

1. 7.4 年のデータを使用してbase-lineモデルを決める

*既知のフレア, "reported flare"は除く

- 2. 光度曲線(5日, 1.5日)
 - ・5日(典型的なフレアの明るい期間)ビンの解析から"small flare"の探査

13

 検出された"small flare"を1.5日の時間ビンでフレアの時間スケールを 求める

3.3 base-line解析

かに星雲のガンマ線 スペクトルモデル

逆コンプトン(IC)成分

シンクロトロン成分: $\Gamma_{sync} = 4.27 \pm 0.08$ Flux = (6.31 ± 0.23) ×10⁻⁷ cm⁻² s⁻¹ energy Flux = (1.45 ± 0.06) ×10⁻¹⁰ erg cm⁻² s⁻¹ **逆コンプトン成分**: $\alpha = 1.50 \pm 0.04$ $\beta = 0.05 \pm 0.01$ Flux = (1.09 ± 0.08) ×10⁻⁷ energy Flux = (5.46 ± 0.28) ×10⁻¹⁰ erg cm⁻² s⁻¹

(Arakawa+ submitted to ApJ)

3.4 ガンマ線の時間変動

⁽Arakawa+ submitted to ApJ)

3.5 "small flare"の探査

・小フレア, "small flare"の探査

"reported flare"は全て検出

(Arakawa+ submitted to ApJ)

MJD

3.6 各々のフレアのtime profile

・典型的な時間スケールを求める

"small flare"の個数は5日ビンで決定

シンクロトロン1.5日ビン光度曲線 (> 100 MeV)

17

fitting function (e.g. Abdo+2010)

 $-t_{i,0})/\tau_{i, rise}$

 $F(t)=F_{
m b}+\sum_{
m c}rac{1}{e^{-(t_{
m c})}}$

 $F_{\mathrm{i},0}$

3.6 各々のフレアのtime profile

18

3.6 各々のフレアのtime profile

・典型的な時間スケールを求める

fitting function (e.g. Abdo+2010)

 $F(t) = F_{
m b} + \sum_{i}^{N} rac{F_{
m i,0}}{e^{-(t-t_{
m i,0})/ au_{
m i, rise}} + e^{-(t-t_{i,0})/ au_{
m i,decay}}}$

			ŕ			
flare id	$F_{ m b}$	F_0	$ au_{ m rise}$	$ au_{ m decay}$	t_0	-
	$[\times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}]$	$[\times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}]$	[day]	[day]	[MJD]	_
small flare 1	$1.4~\pm~0.2$	$5.6~\pm~2.0$	$0.3~\pm~0.4$	$3.3~\pm~1.7$	54777.4 ± 1.0	-
small flare 2	$1.5~\pm~0.4$	$9.0~\pm~2.6$	$0.7~\pm~0.5$	$3.2~\pm~1.3$	$54980.2 ~\pm~ 0.7$	
small flare 3	$1.1~\pm~0.4$	$10.6~\pm~2.8$	$1.1~\pm~1.0$	$1.3~\pm~0.9$	$55299.1~\pm~1.6$	
small flare 4	$1.3~\pm~0.4$	$10.6~\pm~3.1$	$0.6~\pm~0.4$	$2.7~\pm~1.1$	$55991.4 ~\pm~ 0.6$	
small flare 5	$2.0~\pm~0.3$	$12.5~\pm~4.2$	$0.4~\pm~0.2$	$1.8~\pm~0.8$	$56172.7 ~\pm~ 0.5$	
small flare 6 (a)	$0.8~\pm~1.4^{\mathrm{a}}$	$5.2~\pm~1.7$	$11.7~\pm~8.2$	$0.6~\pm~0.5$	$56409.8~\pm~0.7$	
small flare 6 (b)	$0.8~\pm~1.4^{\mathrm{a}}$	$6.1~\pm~3.0$	$2.5~\pm~3.0$	$2.2~\pm~3.0$	56417.0 ± 3.8	
small flare 6 (c)	$0.8~\pm~1.4^{\mathrm{a}}$	$5.6~\pm~1.5$	$0.3~\pm~1.3$	$6.7~\pm~6.8$	$56423.2 ~\pm~ 1.3$	
small flare 7 (a)	$1.3~\pm~0.5^{\mathrm{a}}$	$24.6~\pm~5.8$	$1.6~\pm~0.6$	$0.5~\pm~0.1$	$56726.4 ~\pm~ 0.4$	
small flare 7 (b)	$1.3~\pm~0.5^{\mathrm{a}}$	$18.2~\pm~6.3$	$1.7~\pm~0.7$	$0.6~\pm~0.3$	$56735.3~\pm~0.6$	_
2009 Feb	$2.5~\pm~0.3$	$16.3~\pm~3.8$	$2.3~\pm~0.9$	$0.7~\pm~0.3$	54869.5 ± 0.6	-
$2010 { m Sep}$	$1.6~\pm~0.3$	$30.0~\pm~6.6$	$1.7~\pm~0.6$	$1.0~\pm~0.3$	$55460.0~\pm~0.6$	
$2011 \mathrm{Apr}$	$1.8~\pm~0.3$	$142.7~\pm~10.8$	$1.6~\pm~0.1$	$0.6~\pm~0.1$	$55668.0~\pm~0.1$	
2012 July	$1.8~\pm~0.6$	$11.2~\pm~3.5$	$3.3~\pm~1.4$	$0.3~\pm~1.2$	$56113.6~\pm~0.8$	
2013 Mar	$2.3~\pm~0.5$	$34.2~\pm~2.0$	$2.4~\pm~0.4$	$3.6~\pm~0.6$	$56356.8~\pm~0.6$	
2013 Oct (a)	$2.1~\pm~0.3^{ m a}$	$23.5~\pm~3.6$	$2.1~\pm~0.5$	$0.7~\pm~0.2$	$56583.4 ~\pm~ 0.3$	
2013 Oct (b)	$2.1~\pm~0.3^{ m a}$	$27.0~\pm~4.8$	1.0 (fixed)	$1.5~\pm~0.5$	$56594.5 ~\pm~ 0.6$	

フレアの典型的な時間スケールはrise time、decay timeともにdayスケール

(Arakawa+ submitted to ApJ)

19

3.7 "small flare"と "reported flares"の比較

"small flare" vs. "reported flares"

フルーエンス [erg cm⁻²] vs. 光子指数

フルーエンス: フレア期間 (tpeak-trise) — (tpeak+tdecay)のフラックス×フレア期間(trise+tdecay)

- "small flare"と"reported flare"には大きな差が見られない
- 弱いフレアの頻度が高い (2011 Apr, 2013 Marchは例外的に大きいことを示唆)
- LATでは検出できないようなより弱いフレア成分の存在を示唆

(Arakawa+ submitted to ApJ)

3.8 "small flare"生成場所の物理的環境²¹

- ・ "small flare"生成領域の磁場:
 - 観測された"small flare"の典型的な時間スケール=> day
 - ドップラーブーストを無視
 - ・ "small flare"生成領域内で一様な磁場

η : 加速効率パラメータ η > 1 => MHD regime η = 1 => 磁気リコネクション

rise time = 加速時間: $B \simeq 1\eta^{2/3} \left(\frac{\tau_{\rm acc}}{1 \text{ day}}\right)^{-2/3} \left(\frac{\varepsilon}{100 \text{ MeV}}\right)^{1/3} \text{mG}^{\eta=1=>\overline{\mathrm{W}}\overline{\mathrm{M}}\overline{\mathrm{M}}\overline{\mathrm{M}}\overline{\mathrm{M}}^{3}}$ decay time = シンクロトロン放射冷却でエネルギーを失う時間: $B \simeq 1 \left(\frac{\tau_{\rm cool}}{2 \text{ day}}\right)^{-2/3} \left(\frac{\varepsilon}{100 \text{ MeV}}\right)^{-1/3} \text{mG}}$

✓ dayスケールの時間変動から決まる磁場: ~1mG ✓ 放射モデルから期待されるPWN内の平均磁場: ~ 200 μG **=> "small flare"の起源は放射モデル計算から期待される領域とは異なる。**

3.9 "small flare"の意義、起源

・7.4年のデータを用いて"small flare"の存在を示した

- ・フレアは年に1回程度のレアな現象ではない
- ・ 強度が弱いフレアの頻度が高い
- ・ "small flare"よりも弱い成分の存在が示唆
- => フレアの強度、時間変動着目した研究だけではなく、**フレアの** 統計的な強度分布に関する理論研究の必要性
- ・ "small flare"はday scaleの時間変動
 - "small flare"は"reported flare"と同じ強磁場環境下~1mGに起源
 => おそらく同じ領域、ジェットの根本が最有力候補

強磁場環境に起源を持つフレアからの100 MeVガンマ線への寄与が 小さくない or の大部分を担っている(かもしれない)

• PeV電子 (100 MeVシンクロトロン放射)の起源

かに星雲からの~100 MeVシンクロトロン放射の大部分が 強磁場領域~1 mGである可能性を提示

5.まとめ

•>100 TeVガンマ線から加速領域の物理環境への制限

- 加速領域の磁場 ~120 μG
 - PeV電子を閉じ込めるのは困難
- 100 MeVガンマ線は"wind electron"とは**別成分**からの放射を示唆
- ・ "wind electron" + Maxwellian で説明可能,
- ・Maxwellian成分の存在及び磁場は将来TeVガンマ線観測で検証可能
- ・ "small flare"の検出
 - •7.4年のデータを用いて系統的にフレアの探査を行った
 - 弱いフレアがメイン&より弱いフレアの存在が示唆
 - フレア成分が定常成分への寄与を示唆
 - ・フレアの時間スケールはdayスケール
 - 1mGの強磁場 >> かに星雲内の平均磁場~200 μG

かに星雲内でのPeV電子は~1mGの強磁場環境に起源を持つ可能性を提示