2019年3月20日 高宇連研究会 @東京大学

中性鉄輝線で探る 超新星残骸における低エネルギー宇宙線

信川 久実子 (奈良女子大学)

なぜ低エネルギー宇宙線

SNRで銀河宇宙線の何割を説明できるのか? 「SNRで加速される宇宙線の総量」は観測的に未解明 数が多いはずの低エネルギー側 (keV-MeV) は未測定

<mark>直接観測</mark> 太陽変調の影響を受ける => 唯一の観測例がVoyager (Stone+2013)

- 間接観測 電離率ζ(H₃+、DCO+/HCO+)
 - => 宇宙線密度やスペクトルは測定不可 (Indriolo & McCall 2012, Ceccarelli+2011)
 - GeV ガンマ線観測(⊓⁰崩壊)
 - => 原理的に > 280 MeV の陽子を観測 (Ackermann+2013)

5 keV以上で低バックグラウンドかつ有効面積大きい

「すざく」のデータを用い、SNRで中性鉄輝線探査

これまでの観測結果

10天体以上から低エネルギー宇宙線 (多くは陽子) 起源の 中性鉄輝線検出

- W28 (Nobukawa+18, Okon+18)
- Kes 67 (Nobukawa+18)
- Kes 69 (Nobukawa+18)
- Kes 78 (Nobukawa+18)
- Kes 79 (Sato+16)
- 3C 391 (Sato+14)
- W44 (Nobukawa+18)
- G323.7-1.0 (Saji, Nobukawa+18)

- G330.2+1.0 (佐治D論18)
- G346.6-0.2 (佐治D論18)
- G348.5+0.1 (佐治D論18)
- Kes 17 (佐治D論18)
- N132D (Bamba, Nobukawa+18)
- IC 443 (Hirayama, Nobukawa+19)
- W51C (preliminary)

表面輝度 = several x 10⁻⁹ – several x 10⁻⁸ ph/s/cm²/arcmin² 宇宙線のエネルギー密度 (MeV band) ~ 10–100 eV cm⁻³

Counts s⁻¹ keV⁻¹

(data-model)/error

本講演のトピック

これまでの観測結果をふまえ、以下を議論する

- ✔ 超新星残骸ではいつまで粒子加速を行っているか?
- ✔ 低エネルギー宇宙線のエネルギー論
- ✔ 高エネルギー宇宙線との比較
- ✔ 将来の低エネルギー宇宙線研究

Very young (< 1000 yr)	none
Young (< 10,000 yr)	G330.2+1.0 / N132D
Middle-aged (< 100,000 yr)	W28 / Kes 69 / Kes 78 Kes 79 / 3C 391 / W44 G323.7-1.0 / G346.6-0.2 G348.5+0.1 Kes 17 IC 443 / W51C
Old (~100,000 yr)	Kes 67

√ほとんどがMiddle-aged (+ old)

8

観測バイアス

- 宇宙線起源の中性鉄輝線は微弱で、若いSNRでは埋もれる
 - 強いシンクロトロン放射(例:RX J1713.7-3946)
 - 低電離プラズマ (鉄イジェクタ) からの~6.4 keV輝線 (e.g. RCW86)

粒子加速への示唆

 低エネルギー宇宙線はすぐ冷える (10²-10³ yr) @100-1000 cm⁻³
 => 宇宙線起源の中性鉄輝線の存在は、middle-agedやold SNRで 少なくともMeVまで粒子加速が継続していることを示唆

中性鉄輝線とガンマ線

9

GeV	W44 / Kes 17 / 3C 391
GeV + TeV	W28 / Kes 78 G323.7-1.0 / G348.5+0.1 W51C / IC 443 / N132D
Non-detection	Kes 67 / Kes 69 / Kes 79 G330.2+1.0 / G346.6-0.2

✓中性鉄輝線SNRの半分以上はガンマ線放射あり

10

中性鉄輝線とガンマ線放射はいつも相関があるわけではない

- 低エネルギー側と高エネルギー側の拡散 or 逃亡の違い
- 低エネルギー宇宙線は加速されているが高エネルギーまでは 加速されていない

Escape model

Makino, Fujita, Nobukawa et al. submitted to PASJ (arXiv:190110477)

Escape modelを用いて、W28、 W44の中性鉄輝線とガンマ線を 同時に説明できるか検証

- GeV・TeV宇宙線はSNRからすでにescape
- MeV宇宙線は相互作用している分子雲中にじわじわ漏れ出す => 中性鉄輝線、Fermi、H.E.S.Sの結果を全て説明

エネルギー論

- ✓ 中性鉄輝線の強度から分かる低エネルギー宇宙線の総エネルギー量と 爆発エネルギーの比較はあまり意味がない
- ✔ 低エネルギー宇宙線はすぐ冷える (10²-10³ yr)

<=> GeV宇宙線の冷却時間 <u>></u> middle-aged SNRの年齢

✓ MeV陽子の運動エネルギーから中性鉄輝線光度への変換率 10⁻⁷
 (Tatischeff et al. 2012)

最近10²–10³ yrで低エネルギー宇宙線加速に注入されたエネルギー W44、IC443 => ~ 10³⁸ erg/s Middle-aged でもこの程度のエネルギーは加速に使われている

これまでの研究で分かってきたこと

13

- ✔ 超新星残骸ではいつまで粒子加速を行っているか?
 - Middle-aged以上でも低エネルギー宇宙線は加速されている

✔ 低エネルギー宇宙線のエネルギー論

- Middle-aged SNRでも10³⁸ erg/s のエネルギーが低エネルギー 宇宙線加速に使われている
- ✔ 高エネルギー宇宙線との比較
 - 中性鉄輝線とガンマ線放射に必ずしも空間的相関はない
 - escape modelで低エネルギー側 (MeV) と高エネルギー側

(GeV-TeV)を同時に説明する解はある

低エネルギー宇宙線のスペクトル・密度は謎のまま

- 超精密分光 --

- Line profile => 衝突粒子の判別
- さらに微弱な中性鉄輝線検出 => 若いSNRからも?
- 他の元素からの中性輝線検出 => 宇宙線スペクトル測定

E_{_} (MeV/nucleon)

元 素	エネルギー (Ka ₁ , Ka ₂)	K輝線生成断面積	アバンダンス (H=1)
Fe	6404 eV 6391 eV	4×10 ⁻²² cm ²	3×10-5
Si	1739 eV 1740 eV	1×10 ⁻²¹ cm ²	3.5×10⁻⁵

Si も Feと同程度の強度で中性輝線出ているはず

CCDでは、Sil Kaは Mg XII Lyβ (1745 eV) と区別が困難 高宇運研究会

– 高角度分解能 –

- 中性鉄輝線分布の詳細な構造
 => 低エネルギー宇宙線の密度分布
- 中性鉄輝線分布の変化@10年スケール

 (低エネルギー宇宙線の冷却時間100年)
 (低エネルビー宇宙線の冷却時間100年)

=> 低エネルギー宇宙線(陽子)加速・拡散の時間発展

銀河面上の中性鉄輝線 (Nobukawa et al. 2015)の観測
 => 未知の加速源 (隠れたSNR、統計加速)の解明

中性鉄輝線を用いた低エネルギー宇宙線のサイエンスは、 超精密分光、高角度分解能のどちらでも面白みがある。

まとめ

- 中性鉄輝線を用いた低エネルギー宇宙線研究で分かってきたこと
- ✔ 超新星残骸ではいつまで粒子加速を行っているか?
 - Middle-aged以上でも低エネルギー宇宙線は加速されている
- ✔ 低エネルギー宇宙線のエネルギー論
 - Middle-aged SNRでも10³⁸ erg/s のエネルギーが低エネルギー 宇宙線加速に使われている
- ✔ 高エネルギー宇宙線との比較
 - escape modelで低エネルギー側 (MeV) と高エネルギー側

(GeV-TeV)を同時に説明する解はある

将来の低エネルギー宇宙線研究

✔超精密分光でも高角度分解能でも重要な成果

(宇宙線のスペクトル、密度の測定 +a)