活動銀河核の 鉄Kバンドにおける X線スペクトルの 変動性について (On the X-ray spectral variability in the Fe-K band of AGNs)

水本岬希(JAXA/ISAS) 2018.3.9 高宇連研究会@首都大

目次(兼イントロダクション)

- 1. Introduction
 - ・ 活動銀河核X線スペクトルの「広がった鉄K輝線構造」
- 2. Review
 - ・ 鉄Kバンドを説明するいくつかのシナリオ
- 3. Purpose of this thesis
 - 時間変動に着目してシナリオの妥当性を検証する
- 4. Disc-reflection scenario (円盤反射シナリオ)
 - ・ 円盤反射によって鉄Kバンドを説明するシナリオ
- 5. Cloud-reflection scenario (クラウド反射シナリオ)
 - ・ 吸収体、散乱体によって鉄Kバンドを説明するシナリオ
- 6. Discussion
- 7. Conclusion

活動銀河核の広がった鉄K輝線

モデルを切り分けるには

- 「広がった鉄輝線」のスペクトルは、複数のモデルで説明可能
- モデルの縮退が解けない
 - 連続成分との切り分けが難しい
 - 連続成分の取り方を変えるとプロファイルが簡単に変わる (e.g., Noda+11)

X線スペクトルの時間変動を手掛かりにしよう 1. root-mean-square (rms) スペクトル 2. 時間遅れ(ラグ)

MCG-6-30-15

NGC 4051

2. Review

どちらのシナリオが妥当?

		スペクトル	rmsの凹み	時間遅れ
円盤反射 シナリオ	相対論的円盤 反射モデル	\bigcirc	?	?
クラウド反射 シナリオ	部分吸収モデル	\bigcirc	?	?
	アウトフロー 吸収線モデル			

本論文の目的

		スペクトル	rmsの凹み	時間遅れ
円盤反射 シナリオ	相対論的円盤 反射モデル	\bigcirc	個別には説明可能	
クラウド反射 シナリオ	部分吸収モデル	\bigcirc	\bigcirc	まだ
	アウトフロー 吸収線モデル			

- 円盤反射シナリオで、rmsの凹みと時間遅れを同時に 説明することができるか?
- クラウド反射シナリオで、時間遅れを説明することが できるか?
 - それはrmsの凹みと矛盾しないか?

円盤反射シナリオ

ターゲット:IRAS 13224-3809 深いrmsの凹みと時間遅れがともに顕著に見えている典型的な天体

4. Disc-reflection scenario

セッティング #2

- 半無限大の厚みを持った電離していない円盤を仮定
- 円盤内での複数散乱は考えない
- へ スピン a=0, 0.6, 0.9, 0.998
- Inclination=60deg
- 散乱の角度依存性は考えない
- 吸収断面積: Morrison & McCammon 1983
- 散乱断面積: Klein-Nishina
- 光源は「=2のべき型スペクトル
- Lampは回転軸上に設置
- ∩ R_{in}=ISCO, R_{out}=100R_g
- h (=height/R_g) が 2.2-10 の間で変動。h=2.2-3は0.2刻み, h=3-10は1刻み

フラックス変動

4. Disc-reflection scenario

rmsを観測と比較

時間遅れを観測と比較

円盤反射シナリオのまとめ

- Ray-tracing法に基づいた数値計算
- IRAS13224-3809の観測を説明することを試み
 た
- 鉄組成で矛盾が生じる
 - rmsの凹み → 鉄が太陽組成の10倍以上必要
 - 時間遅れ → 鉄は太陽組成程度でよい
- 円盤反射シナリオでは鉄Kバンドの変動性を同時 に説明することは難しい

クラウド反射シナリオ 時間遅れを説明しなくてはいけない 時間遅れ Lag-frequencyは説明可能 広がった輝線的構造は説明され ていない

時間遅れの中に、広がった輝線的構造を 何とかして作ろう → クラウドに速度を与えてみる

セッティング

MONACO (Odaka+11) による モンテカルロシミュレーション

- ・ 電離していない部分球殻
- R=100 R_g (M_{BH}=10⁷M_{solar}) =5000 光秒
- ・ 殻の厚み (△R) = R/10
- アウトフロー速度:0.14c
- N_H=2×10²³ cm⁻²
- 入射スペクトル:「=2のべき型スペクトル
- 光子数:7×10⁸
- 立体角:Ω/4π=0.7

5. Cloud-reflection scenario

円盤風の計算結果#3

lag-frequency

lag-energy

5. Cloud-reflection scenario

クラウド反射シナリオのまとめ

- MONACOによるモンテカルロシミュレーション
- 100R_g以内に存在するアウトフローするクラウ
 ドによって、観測される時間遅れが再現可能
- → 円盤風が尤もらしい
- 円盤風のジオメトリで計算を行い、観測される
 時間遅れを定量的に説明することに成功した

鉄Kバンドの変動性

		スペクトル	rmsの凹み	時間遅れ
円盤反射 シナリオ	相対論的円盤 反射モデル	\bigcirc	鉄組成が互	いに矛盾
クラウド反射 シナリオ	部分吸収モデル	\bigcirc	\bigcirc	0
	アウトフロー 吸収線モデル			

- スペクトル&rmsの凹み \rightarrow 冷た
- 時間遅れ

→ 冷たい部分吸収体
 → 円盤風

6. Discussion

アウトフローの作る不安定性

輻射圧>重力 → 見かけ上外向きに重力 → Rayleigh-Taylor 不安定性 → 輻射不安定性(輻射が密度の薄いところを進む)により増幅

> アウトフローがあると、その外側に クランピーな吸収体が自然に作られる

IRAS13224 & 1H0707 の場合

吸収体を突き切るような視線方向で見ている

輝線の広がりとEWも説明可能

7. Conclusion

まとめとFuture work

- 活動銀河核の広がった鉄K輝線構造に関する2つの時間変動の特徴
 - rmsスペクトルの凹み
 - 時間遅れ
- 円盤反射シナリオでは、鉄組成に自己矛盾
- ・ クラウド反射シナリオでは、円盤風+冷たい粒々の 吸収体で矛盾なく説明可能
- 時間遅れを使えば、視線外の円盤風にアクセスする ことができる
- Hydro-dynamical数値シミュレーションと組み合わ せた計算や、Athenaなど将来ミッションによって、 円盤風の構造を詳しく調べることができると期待